練習問題44 東京工業大学 極限値 数検1級 教員採用試験(数学) - 質問解決D.B.(データベース)

練習問題44 東京工業大学 極限値 数検1級 教員採用試験(数学)

問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }(\displaystyle \frac{{}_{ 3n } C_n}{{}_{ 2n } C_n})^\frac{1}{n}$の極限値を求めよ。

$\displaystyle \int_{0}^{1}f(x)dx=\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n}\displaystyle \sum_{k=1}^n f(\displaystyle \frac{k}{n})$

出典:東京工業大学 練習問題
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#数列の極限#その他#数学検定#数学検定1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }(\displaystyle \frac{{}_{ 3n } C_n}{{}_{ 2n } C_n})^\frac{1}{n}$の極限値を求めよ。

$\displaystyle \int_{0}^{1}f(x)dx=\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n}\displaystyle \sum_{k=1}^n f(\displaystyle \frac{k}{n})$

出典:東京工業大学 練習問題
投稿日:2021.08.13

<関連動画>

【数Ⅲ】【関数と極限】数列の極限5 ※問題文は概要欄

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列$\{ a_n \}, \{ b_n \}, \{ c_n \}$について、次の事柄は正しいか。
正しいものは証明し、正しくないものは、その反例をあげよ。
ただし、$\alpha$は定数とする。
(1) $\displaystyle \lim_{ n \to \infty} a_n = \infty, \lim_{n \to \infty} b_n = \infty$ ならば $ \displaystyle \lim_{n \to \infty}(a_n-b_n)=0$
(2) $ \displaystyle \lim_{ n \to \infty} a_n = \infty, \lim_{n \to \infty} b_n = 0$ ならば $ \displaystyle \lim_{n \to \infty}a_nb_n=0$
(3) $ \displaystyle b_n \lt a_n \lt c_n , \lim_{n \to \infty}(c_n-b_n)=0$ ならば $ \{ a_n \}$は収束する。
(4) $ \displaystyle \lim_{n \to \infty}(a_n-b_n)=0, \lim_{n \to \infty}a_n =\alpha$ ならば $\displaystyle \lim_{n \to \infty}b_n= \alpha$
この動画を見る 

福田の数学〜曲線の長さの計算は大丈夫?〜明治大学2023年理工学部第2問〜曲線の長さと極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\dfrac{1}{8}x^2-logx(x \gt0)$とし、座標平面上の曲線y=f(x)をCとする。ただし、logxは自然対数を表す。関数f(x)は$x=\fbox{あ}$で最小値をとる。曲線C上の点A(1,f(1))における曲線Cの接線をlとすると、lの方程式は$y=\fbox{い}$である。
曲線Cと接線lおよび直線x=2で囲まれた図形の面積は$\fbox{う}$である。また、点$(t,f(t))(t \lt1)$をPとし、点Aから点Pまでの曲線Cの長さをL(t)とすると$L(2)=\fbox{え}$である。また、$\displaystyle \lim_{ t \to 1+0 } \dfrac{L(t)}{t-1}= \fbox{お}$である。

2023明治大学理工学部過去問
この動画を見る 

17滋賀県教員採用試験 3番 極限について

アイキャッチ画像
単元: #関数と極限#数列の極限#関数の極限#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
$\sqrt{\sqrt{3+{\sqrt{3+{\sqrt3+・・・}}}}}$の値を求めよ.
この動画を見る 

【高校数学】数Ⅲ-69 数列の極限⑤(無限等比数列)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{n\to\infty}3^n$

②$\displaystyle \lim_{n\to\infty}1^n$

③$\displaystyle \lim_{n\to\infty}\left(-\dfrac{1}{3}\right)^n$

④$\displaystyle \lim_{n\to\infty}(-3)^n$

⑤$\displaystyle \lim_{n\to\infty}\dfrac{3^n+4^n}{5^n}$

⑥$\displaystyle \lim_{n\to\infty}\dfrac{2^n}{1+2^n}$

⑦$\displaystyle \lim_{n\to\infty}\dfrac{5^n+3^n}{2^n-3^n}$

⑧$\displaystyle \lim_{n\to\infty}\dfrac{2^{n+1}-4^{n+1}}{3^n-4^n}$
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第3問〜漸化式と数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}\ r$を実数とする。
次の条件によって定められる数列$\left\{a_n\right\},\left\{b_n\right\},\left\{c_n\right\}$を考える。
$a_1=r,a_{n+1}=\frac{[a_n]}{4}+\frac{a_n}{4}+\frac{5}{6}(n=1,2,3,\ldots)$
$b_1=r,b_{n+1}=\frac{b_n}{2}+\frac{7}{12}(n=1,2,3,\ldots)$
$c_1=r,c_{n+1}=\frac{c_n}{2}+\frac{5}{6}(n=1,2,3,\ldots)$
ただし、$[x]$はxを超えない最大の整数とする。以下の問いに答えよ。
(1)$\lim_{n \to \infty}b_n$と$\lim_{n \to \infty}c_n$を求めよ。
(2)$b_n \leqq a_n \leqq c_n (n=1,2,3,\ldots)$を示せ。
(3)$\lim_{n \to \infty}a_n$を求めよ。

2022早稲田大学理工学部過去問
この動画を見る 
PAGE TOP