福井大(医)漸化式 - 質問解決D.B.(データベース)

福井大(医)漸化式

問題文全文(内容文):
$a_1=1,a_2=3$であり,$n\geqq 2$とする.
$a_{n+1}-\dfrac{4n+2}{n+1}an+\dfrac{4n-4}{n}a_{n-1}=0$

(1)$b_n=a_{n+1}-\dfrac{2n}{n+1}a_n(n\geqq 1)$,$b_n$を$n$で表せ.
(2)$a_n$を求めよ.

福井大(医)過去問
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1,a_2=3$であり,$n\geqq 2$とする.
$a_{n+1}-\dfrac{4n+2}{n+1}an+\dfrac{4n-4}{n}a_{n-1}=0$

(1)$b_n=a_{n+1}-\dfrac{2n}{n+1}a_n(n\geqq 1)$,$b_n$を$n$で表せ.
(2)$a_n$を求めよ.

福井大(医)過去問
投稿日:2020.12.15

<関連動画>

室蘭工業大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#室蘭工業大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'17室蘭工業大学過去問題
$a_1=0,a_2=2$
$a_{n+2}=8(n+2)a_{n+1}-7(n^2+3n+2)a_n$
(1)$b_n=\frac{a_n}{n!}$として$b_n$を求めよ
(2)$a_n$を求めよ
この動画を見る 

福田の数学〜整数部分の評価が難しい問題〜北里大学2023年医学部第1問(3)〜漸化式と整数部分の評価

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a=3+\sqrt{10},b=3-\sqrt{10}$とし、正の整数nに対して$A_n=a^n+b^n$とおく。
このとき、$A_{2} ,A_{3}$の値はそれぞれ$A_{2}=\fbox{ク},A_{3}=\fbox{ケ}$であり、
$A_{n+2}$を$A_{n+1},A_{n}$を用いて表すと$A_{n+2}=\boxed{コ}$である。
また、$a^{111}$の整数部分を$k$とするとき、kを10で割ると$\boxed{サ}$余る。

2023北里大学医過去問
この動画を見る 

いい問題

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
n自然数
$\sqrt{n}$に最も近い整数を$a_n$とする
(例)$a_3=2$,$a_{10}=3$
$\displaystyle\sum_{n=1}^{2023}\frac{1}{a_n}$を求めよ
この動画を見る 

帯広畜産大 漸化式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
帯広畜産大学過去問題
初項~第n項までの和を$S_n$とする。
一般項$a_n$を求めよ。
$S_n = 9- \frac{1}{2}a_n-\frac{1}{3^{n-2}}$
この動画を見る 

2016年度 本試験 数学B 群数列の解き方復習!

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#センター試験・共通テスト関連#センター試験#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
2016年度 本試験 数学B 群数列の解き方復習解説動画です
この動画を見る 
PAGE TOP