福田の数学〜京都大学2022年理系第6問〜漸化式の解法 - 質問解決D.B.(データベース)

福田の数学〜京都大学2022年理系第6問〜漸化式の解法

問題文全文(内容文):
数列$\left\{x_n\right\}, \left\{y_n\right\}$を次の式
$x_1=0, x_{n+1}=x_n+n+2\cos\frac{2\pi x_n}{3}  (n=1,2,3,\ldots)$
$y_{3m+1}=3m, y_{3m+2}=3m+2, y_{3m+3}=3m+4  (m=0,1,2,3,\ldots)$
により定める。このとき、数列$\left\{x_n-y_n\right\}$の一般項を求めよ。

2022京都大学理系過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
数列$\left\{x_n\right\}, \left\{y_n\right\}$を次の式
$x_1=0, x_{n+1}=x_n+n+2\cos\frac{2\pi x_n}{3}  (n=1,2,3,\ldots)$
$y_{3m+1}=3m, y_{3m+2}=3m+2, y_{3m+3}=3m+4  (m=0,1,2,3,\ldots)$
により定める。このとき、数列$\left\{x_n-y_n\right\}$の一般項を求めよ。

2022京都大学理系過去問
投稿日:2022.03.10

<関連動画>

ド・モアブルの定理を数学的帰納法で証明するよ。

アイキャッチ画像
単元: #複素数平面#数列#数学的帰納法#数学(高校生)#数B#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
ド・モアブルの定理を数学的帰納法で証明していきます.
この動画を見る 

東大 確率 漸化式 高校数学 Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
'91東京大学過去問題
正四面体をn回転がしたとき、最初に床に接していた面が床に接している確率
この動画を見る 

北海道大 等比複素数列 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
北海道大学過去問題
数列{$Z_n$}は初項48、公比$\frac{1}{4}(\sqrt{6}+\sqrt{2}i)$の等比複素数列である。
この数列の項のうち実数のみの項を並べた数列を{$a_n$}
(1)$Z_4$
(2)$a_3$
(3)$\displaystyle\sum_{n=1}^\infty a_n$
この動画を見る 

ざ・見掛け倒し

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{n=1}^{2022}n^{2022}=$
$1^{2022}+2^{2022}+3^{2022}+$
$・・・・・・+2021^{2022}+2022^{2022}$を13で割った余りを求めよ.
この動画を見る 

背景を見破れ!

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$\dfrac{1}{2!9!}+\dfrac{1}{3!8!}+\dfrac{1}{4!7!}+\dfrac{1}{5!6!}=\dfrac{n}{10!}$

$\displaystyle \sum_{k=1}^{6}\dfrac{1}{k!(13-k)!}=\dfrac{n}{12!}$
この動画を見る 
PAGE TOP