大学入試問題#518「2024年の整数問題はこれで決まり!!」 英語orドイツ語 #整数問題 - 質問解決D.B.(データベース)

大学入試問題#518「2024年の整数問題はこれで決まり!!」 英語orドイツ語 #整数問題

問題文全文(内容文):
$n^3+n+5$
$n^3-n+5$
が共に素数となるような整数$n$を求めよ
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$n^3+n+5$
$n^3-n+5$
が共に素数となるような整数$n$を求めよ
投稿日:2023.04.27

<関連動画>

整数問題 千葉大(医)類題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$k,n$を
$k^2=3^n+360$
全て求めよ。

千葉大(医)過去問
この動画を見る 

福田のおもしろ数学400〜2項展開の係数と次数に関する個数

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\left(\sqrt x+\dfrac{1}{2\sqrt[4]{x}}\right)^n$の展開式を降順に並べたとき、

最初の3項の$x$の係数が等差数列になった。

この展開式の中に$x$の次数が整数となる

項は何個あるか?
この動画を見る 

福田のおもしろ数学399〜20002000以下で0と2以外の数字を使わない正の整数の個数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$20002000$以下で$0$と$2$以外の数字を

含まない正の整数は何個あるか?
この動画を見る 

コメント欄はありがたい 素晴らしい別解

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q,r$は自然数であり,$p+q+r=10$である.
$\dfrac{10!}{p!q!r!}$の総和を求めよ.
この動画を見る 

2024山口大 1の10乗根のナイスな問題

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2Z^4+(1-\sqrt{ 5 })Z^2+2=0$であるとき
(1)$Z^{10}=1$であることを示せ
(2)$\cos \displaystyle \frac{\pi}{5} \cos \displaystyle \frac{2\pi}{5}=\displaystyle \frac{1}{4}$を示せ

出典:2024年山口大学数学 過去問
この動画を見る 
PAGE TOP