🍫【流れが分れば必ず解ける!】二次方程式:明治大学付属明治高等学校高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

🍫【流れが分れば必ず解ける!】二次方程式:明治大学付属明治高等学校高等学校~全国入試問題解法

問題文全文(内容文):
$ q $の値を求めよ.
①$ x^2+(a+1)(a+2)x-2a-8=0 $
②$ x^2-(a+4)x+2a^2+6a+4=0 $
①②は,$ x-q $を共通な解としてもつ.

①の解が$ x=p,q $
②の解が$ x=p,r $
($ p,q,r$はすべて異なる数とする.)

明大明治学校過去問
単元: #数学(中学生)#中1数学#中3数学#方程式#2次方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ q $の値を求めよ.
①$ x^2+(a+1)(a+2)x-2a-8=0 $
②$ x^2-(a+4)x+2a^2+6a+4=0 $
①②は,$ x-q $を共通な解としてもつ.

①の解が$ x=p,q $
②の解が$ x=p,r $
($ p,q,r$はすべて異なる数とする.)

明大明治学校過去問
投稿日:2023.02.14

<関連動画>

【数学】中3-69 三平方・空間図形への利用③(円錐編)

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#空間図形#三平方の定理
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①右の円錐の体積は?

②直線ACを回転の軸として一回転させてできる立体の体積は?

◎右の展開図を組み立てたときにできる立体について求めよう!
③高さは?

④体積は?

※図は動画内参照
この動画を見る 

中1数学「数量を表す文字式②(速さ)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中1~第16回数量を表す文字式②(速さ)~

例題
次の数量を表す式を。()の中の単位で、文字式の表し方にしたがって書きなさい。

(1)時速xkmで三時間走ったときの距離(km)

(2)xkmを2時間で歩いたときの速さ(時速、km)

(3)Xmを分速60mで歩いたときの時間(分)

(4)X分で40km進んだときの速さ(時速,km)

(5)秒速2mで20分間に走った距離(m)

(6)分達2mで300km走ったときにかかる時間(分)
この動画を見る 

比例  専修大学松戸

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
yはx-1に比例し、x=2のときy=3である。
y=1のときx=?

専修大学松戸高等学校
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第5問〜三角比と空間図形の計量

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#空間図形#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
半径$4\sqrt2$の球面S上に3点A,B,Cがあり、線分AB,BC,CAの長さはそれぞれ$AB=4\sqrt6,BC=10,C=6$とする。
(1)$\cos\angle ABC=\boxed{\ \ テ\ \ }$である。平面ABCで球面Sを切った切り口の円をTとする。
Tの半径は$\boxed{\ \ ト\ \ }$である。点Dが円T上を動くとき、$\triangle DAB$の面積の最大値は
$\boxed{\ \ ナ\ \ }$である。
(2)球面Sの中心Oから平面ABCに下ろした垂線OHの長さは$\boxed{\ \ ニ\ \ }$である。
(3)点Eは球面S上を動くとき、三角錐EABCの体積の最大値は$\boxed{\ \ ヌ\ \ }$である。

2022慶應義塾大学理工学部過去問
この動画を見る 

【高校受験対策】数学-死守6

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#比例・反比例#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の計算をしなさい.

①$5-7$

②$- 6 + 9 \div \dfrac{1}{4}$

③$3\sqrt2\times \sqrt8$

④$2(2a-3b)+(a-5b)$

2.次の問いに答えなさい.

⑤右の図1のように,線分$AB$を直径とする円があります.
円の中心$O$を定規とコンパスを使って作図しなさい.
ただし,点を示す記号$O$をかき入れ,作図に用いた線は消さないこと.

⑥右の図2のような反比例の関係$y =\dfrac{a}{x}$のグラフがあります.
点$O$は原点とします.$a$の値を求めなさい.

⑦連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x + y = 5 \\
y=4x-1
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑧二次方程式$x^2+5x+1=0$を解きなさい.

図は動画内を参照
この動画を見る 
PAGE TOP