重積分④-1【積分順序の変更】(高専数学 微積II,数学検定1級解析) - 質問解決D.B.(データベース)

重積分④-1【積分順序の変更】(高専数学 微積II,数学検定1級解析)

問題文全文(内容文):
積分順序を変更せよ.
(1)$\displaystyle \int_{0}^{1} \displaystyle \int_{x^2}^{x} f(x,y)dy \ dx$

(2)$\displaystyle \int_{0}^{1} \displaystyle \int_{x}^{3x} f(x,y)dy \ dx$
単元: #数Ⅱ#積分とその応用#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
積分順序を変更せよ.
(1)$\displaystyle \int_{0}^{1} \displaystyle \int_{x^2}^{x} f(x,y)dy \ dx$

(2)$\displaystyle \int_{0}^{1} \displaystyle \int_{x}^{3x} f(x,y)dy \ dx$
投稿日:2020.12.14

<関連動画>

福田の数学〜中央大学2021年経済学部第1問(3)〜三角関数の最大

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}} (3)-\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$
のとき、次の関数が最大値をとるときのxの値を求めよ。
$y=\sin x+\cos^2x$

2021中央大経済学部過去問
この動画を見る 

【数学Ⅲ】指数の積分(意外と解ける?)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学Ⅲ】指数の積分解説動画です
-----------------
$\int_0^1 a^t b^{1-t}dt$を求めよ
この動画を見る 

数検準1級1次過去問【2020年12月】1番:因数定理

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣$x^3+(3-a)x^2+(4-a)x+2a+4=0$
が重解をもつような定数aの値をすべて求めよ。
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(3)〜集合と対数不等式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3)関数$f(x)=\log_{\frac{1}{3}}\sqrt{3x^3-2x^2}$と$g(x)=\log_9(3x^2-2)$の定義域をそれぞれ
集合A,Bで表すと、$A\cap B=\left\{x|xはx \gt \boxed{\ \ オ\ \ }$を満たす実数である。
実数xが集合$A\cap B$の要素であるとき、$f(x)+g(x) \lt 0$となるための条件は
$\boxed{\ \ オ\ \ } \lt x \lt \boxed{\ \ カ\ \ }$または$x \gt \boxed{\ \ キ\ \ }$となることである。

2022慶應義塾大学医学部過去問
この動画を見る 

自治医大 三次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023自治医科大学過去問題
kは実数
$x^3-6x^2+kx-7 = 0$
の3つの解は複素数平面で1辺の長さが$\sqrt{3}$の正三角形の頂点となる
kの値
この動画を見る 
PAGE TOP