神戸大 3次関数の最大最小 - 質問解決D.B.(データベース)

神戸大 3次関数の最大最小

問題文全文(内容文):
$t\gt 0$とし,
$f(x)=x^3+3x^2-3(t^2-1)x+2t^3-3t^2+1$
$-1\leqq x \leqq 2$ における最大値と最小値を求めよ.

神戸大過去問
単元: #大学入試過去問(数学)#式と証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$t\gt 0$とし,
$f(x)=x^3+3x^2-3(t^2-1)x+2t^3-3t^2+1$
$-1\leqq x \leqq 2$ における最大値と最小値を求めよ.

神戸大過去問
投稿日:2023.05.10

<関連動画>

【数Ⅱ】式と証明:(茶番)突然問題を出されたから解いてみた

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
点$(x,y)$が$\frac{x^2}{4}+\frac{y^2}{5}=$1 $x>0$、$y>0$ を満たしながら動くとき、

$\log_{2}x + \log_{\frac{1}{2}}\frac{1}{y} $の最大値を求めよ。
この動画を見る 

【わかりやすく】不等式の証明を解説(高校数学Ⅱ)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の不等式を証明せよ。
また、(2)で等号が成り立つのはどのようなときか。
(1)$x \gt 2,y \gt 3$のとき、$xy+6 \gt 3x+2y$
(2)$x^2+5y^2 \geqq 4xy$
この動画を見る 

【数I】中高一貫校用問題集(数式・関数編)数と式:多項式:整式の減法の注意点

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅰ#数Ⅱ#数と式#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$A=5x^2-2xy+y^2、B=-3x^2+2xy-4y^2$であるとき、$A-B$を計算しよう。
この動画を見る 

整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2022}$を$x^6-x^5+x^4-x^3+x^2-x+1$で割った余りを求めよ.
この動画を見る 

筑波大 横国大 4次方程式 対数連立方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#筑波大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
筑波大学過去問題
$f(x)=x^4+2x^2-4x+8$
(1)$(x^2+t)^2-f(x)=(px+q)^2$が恒等式になるような整数t,p,qの値を1組求めよ。
(2)$f(x)=0$のすべての解を求めよ。

横浜国立大学過去問題
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
log_{2x}y+log_x2y=1 \\
log_2xy=1
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP