数検準1級1次過去問(7番 極限値) - 質問解決D.B.(データベース)

数検準1級1次過去問(7番 極限値)

問題文全文(内容文):
7⃣$\displaystyle \lim_{ n \to \infty } n \{ log(n+3) - logn \}$
$\displaystyle \lim_{ n \to \infty } (1+\frac{1}{n})^n = \displaystyle \lim_{ n \to 0 } (1+n)^{\frac{1}{n}}=e$
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#関数の極限#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
7⃣$\displaystyle \lim_{ n \to \infty } n \{ log(n+3) - logn \}$
$\displaystyle \lim_{ n \to \infty } (1+\frac{1}{n})^n = \displaystyle \lim_{ n \to 0 } (1+n)^{\frac{1}{n}}=e$
投稿日:2020.11.30

<関連動画>

【数Ⅲ】【極限】収束、発散について調べその和を求めよ (1)3-5/2+5/2-7/3+7/3-9/4+9/4-11/5+… (2)1+1/2+1/3+1/4+1/9+1/8+1/27+1/16+…

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の無限級数の収束・発散について調べ、
収束する場合は、その和を求めよ。
$3 - \frac{5}{2} + \frac{5}{2} - \frac{7}{3} + \frac{7}{3} - \frac{9}{4} + \frac{9}{4}- \frac{11}{5}…$

$1+\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{9}+ \frac{1}{8} + \frac{1}{27} + \frac{1}{16} +…$
この動画を見る 

大学入試問題#408 産業医科大学(2018) #定積分

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数の極限#定積分#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{-1} \displaystyle \frac{x^2+2x+1}{\sqrt{ -x^2-2x+1 }} dx$

出典:2018年産業医科大学 入試問題
この動画を見る 

【数Ⅲ】極限:関数の極限 x=-tの置換

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限を求めよう。
$\displaystyle \lim_{x\to-\infty}(\sqrt{x^2+2x+3}+x)$
この動画を見る 

福田の数学〜北海道大学2023年理系第5問〜中間値の定理と関数の増減PART1

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ a,bを$a^2$+$b^2$<1をみたす正の実数とする。また、座標平面上で原点を中心とする半径1の円をCとし、Cの内部にある2点A(a,0), B(0,b)を考える。
0<θ<$\frac{\pi}{2}$に対してC上の点P($\cos\theta$, $\sin\theta$)を考え、PにおけるCの接線に関してBと対称な点をDとおく。
(1)f(θ)=ab$\cos2\theta$+a$\sin\theta$-b$\cos\theta$とおく。方程式f(θ)=0の解が0<θ<$\frac{\pi}{2}$の範囲に少なくとも1つ存在することを示せ。
(2)Dの座標をa, $\theta$を用いて表せ。
(3)θが0<θ<$\frac{\pi}{2}$の範囲を動くとき、3点A,P,Dが同一直線上にあるようなθは少なくとも1つ存在することを示せ。また、このようなθはただ1つであることを示せ。

2023北海道大学理系過去問
この動画を見る 

福田のわかった数学〜高校3年生理系015〜極限(15)級数と区分求積

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(15)
$\lim_{n \to \infty}\displaystyle \sum_{k=0}^{n-1}\displaystyle \frac{1}{\sqrt{4n^2-k^2}}$ を求めよ。
この動画を見る 
PAGE TOP