高専数学 微積I #226(1) 媒介変数表示の面積 - 質問解決D.B.(データベース)

高専数学 微積I #226(1) 媒介変数表示の面積

問題文全文(内容文):
$0\leqq t\leqq 1$とする.
曲線$x=t^2,y=t^2-2t+1$
$x$軸,$y$軸で囲まれた図形の
面積$S$を求めよ.
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t\leqq 1$とする.
曲線$x=t^2,y=t^2-2t+1$
$x$軸,$y$軸で囲まれた図形の
面積$S$を求めよ.
投稿日:2021.06.13

<関連動画>

18岡山県教員使用試験(数学:5番 媒介変数表示のグラフ・面積)

アイキャッチ画像
単元: #平面上の曲線#その他#媒介変数表示と極座標#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$ $ 0\leqq t\leqq \pi$,
$x=\cos t,y=\sin 2t+2\sin t$とする.

(1)曲線の概形
(2)曲線とx軸で囲まれた面積を求めよ.
この動画を見る 

高専数学 微積I #227(1) 媒介変数表示の曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t \leqq \sqrt3$である.
$x=3t^2,y=3t-t^3$の曲線の長さ$L$を求めよ.
この動画を見る 

【数Ⅲ】式と曲線:tractrixに関する問題

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
tractrixと呼ばれる媒介変数で表される曲線が持つ性質に関する証明です。あまり有名ではないものの、高校数学で十分証明が可能なものになります。入試にも出題される可能性が高いかと思われますので、ぜひご覧ください。
この動画を見る 

高専数学 微積I #226(2) 媒介変数表示の面積

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t\leqq \dfrac{\pi}{4}$とする.
曲線$x=\tan t,y=\sin t+1$と
$x$軸,$y$軸,直線$x=1$で囲まれた図形の
面積$S$を求めよ.
この動画を見る 

福田の数学〜早稲田大学2021年社会科学部第1問〜三角関数で表された点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#三角関数#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ a,bを定数とし、関数$f(x)=x^2+ax+b$ とする。方程式$f(x)=0$の2つの解$\alpha,\beta\\$
が次式で与えられている。
$\alpha=\frac{\sin\theta}{1+\cos\theta}$, $\beta=\frac{\sin\theta}{1-\cos\theta}\\$
ここで$\theta$は、$0 \lt \theta \lt \pi$の定数である。次の問いに答えよ。
$(1)a,b$を$\theta$を用いて表せ。
$(2)\theta$が$0$ $\lt \theta \pi$で変化するとき、放物線$y=f(x)$の頂点の軌跡を求めよ。
$(3)\int_0^{2\sin\theta}f(x)dx=0$ となる$\theta$の値を全て求めよ。


2021早稲田大学社会科学部過去問
この動画を見る 
PAGE TOP