ますただ
ますただ
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
15和歌山県教員採用試験(数学:5番 行列)

単元:
#数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{5}$
$A=\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}$
$A^2-3A+2E=\theta$をみたすとき,
$(a+d,ad-bc)$を全て求めよ.
この動画を見る
$\boxed{5}$
$A=\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}$
$A^2-3A+2E=\theta$をみたすとき,
$(a+d,ad-bc)$を全て求めよ.
13滋賀県教員採用試験(数学:1-(1) 整数問題)

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{1}-(1)$
$17x+13y=850$を満たす正の整数の
組$(x,y)$を全て求めよ.
この動画を見る
$\boxed{1}-(1)$
$17x+13y=850$を満たす正の整数の
組$(x,y)$を全て求めよ.
13滋賀県教員採用試験(数学:2番 数列)

単元:
#数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{2}$
$a_1=48$
$a_{n+1}=2a_n+2^{n+3}n-21\ 2^{n+1}$とする.
一般項$a_n$を求めよ.
この動画を見る
$\boxed{2}$
$a_1=48$
$a_{n+1}=2a_n+2^{n+3}n-21\ 2^{n+1}$とする.
一般項$a_n$を求めよ.
#15 数検1級1次 過去問 3重積分

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定1級#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$V:x^2+y^2+z^2\leqq 4$
$x^2+y^2\leqq 1,z\geqq 0$とする.
$\displaystyle \iiint_V\ z\ dx\ dy \ dz$を求めよ.
この動画を見る
$V:x^2+y^2+z^2\leqq 4$
$x^2+y^2\leqq 1,z\geqq 0$とする.
$\displaystyle \iiint_V\ z\ dx\ dy \ dz$を求めよ.
#14 数検1級1次過去問 数列 数検・教員採用試験

単元:
#数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#その他#数学検定#数学検定1級#数学(高校生)#数B#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{4}$
$A=\begin{pmatrix}
3 & 0 & 2 \\
-4 & 1 & -3 \\
1 & 5 & -2
\end{pmatrix}$
次の行列を,$\ell A^2+mA+nE$で表せ.
$(\ell,m,n=IR)$
(1)$A^3$
(2)$A^5-5A^4+16A^3-24A^2$
この動画を見る
$\boxed{4}$
$A=\begin{pmatrix}
3 & 0 & 2 \\
-4 & 1 & -3 \\
1 & 5 & -2
\end{pmatrix}$
次の行列を,$\ell A^2+mA+nE$で表せ.
$(\ell,m,n=IR)$
(1)$A^3$
(2)$A^5-5A^4+16A^3-24A^2$
練習問題27 極限 はさみうちの原理

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$0\lt a\lt b$とする.
$\displaystyle \lim_{x\to\infty}(a^x+b^x)^{\frac{1}{x}}$を求めよ.
この動画を見る
$0\lt a\lt b$とする.
$\displaystyle \lim_{x\to\infty}(a^x+b^x)^{\frac{1}{x}}$を求めよ.
20和歌山県教員採用試験(数学:3番 数列)

単元:
#数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{3}$
$S_1=3$
$S_{n+1}-5S_n=3・2^{n+1}-3$
一般項$a_n$を求めよ.
この動画を見る
$\boxed{3}$
$S_1=3$
$S_{n+1}-5S_n=3・2^{n+1}-3$
一般項$a_n$を求めよ.
20和歌山県教員採用試験(数学:5番 整数問題)

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{5}$
$x^2-7x+5=0$の2つの解を$\alpha,\beta$とする.
$\alpha^n+\beta^n-7^n$は
5の倍数であることを示せ.
この動画を見る
$\boxed{5}$
$x^2-7x+5=0$の2つの解を$\alpha,\beta$とする.
$\alpha^n+\beta^n-7^n$は
5の倍数であることを示せ.
18和歌山県教員採用試験(数学:5番 定積分)

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\boxed{5}$
$\displaystyle \int_{0}^{1}\dfrac{2x-1}{x^2+x+1}-dx$を解け.
この動画を見る
$\boxed{5}$
$\displaystyle \int_{0}^{1}\dfrac{2x-1}{x^2+x+1}-dx$を解け.
練習問題25 2変数の最大値 教採 数検準1級

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#接線と増減表・最大値・最小値#その他#数学検定#数学検定準1級#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$x^2+y^2=1$のとき,
$3x^2+2xy+y^2$の最大値とそのときの
$x,y$の値を求めよ.
この動画を見る
$x^2+y^2=1$のとき,
$3x^2+2xy+y^2$の最大値とそのときの
$x,y$の値を求めよ.
18和歌山県教員採用試験(数学:6番 二項定理)

単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{6}$
$(x+5)^{70}$を展開したとき,$x$の何乗の係数が
最大になるか求めよ.
この動画を見る
$\boxed{6}$
$(x+5)^{70}$を展開したとき,$x$の何乗の係数が
最大になるか求めよ.
線形代数:#2線形写像の判定

単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
次の写像$\varsigma_i(i=1,2,3,4)$は線形代数であるか調べよ.
(1)
$\varsigma_1:IR^2\to IR$を
$\varsigma_1 \begin{pmatrix}
x \\
y
\end{pmatrix}=2x+3y$と定める.
(2)
$\varsigma_2:IR^2\to IR^2$を
$\varsigma_2 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
x+1 \\
y-1
\end{pmatrix}$と定める.
(3)
$\varsigma_3:IR^2\to IR^2$を
$\varsigma_3 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
\vert x\vert \\
y
\end{pmatrix}$と定める.
(3)
$\varsigma_4:IR^2\to IR^2$を
$\varsigma_4 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
y \\
x
\end{pmatrix}$と定める.
この動画を見る
次の写像$\varsigma_i(i=1,2,3,4)$は線形代数であるか調べよ.
(1)
$\varsigma_1:IR^2\to IR$を
$\varsigma_1 \begin{pmatrix}
x \\
y
\end{pmatrix}=2x+3y$と定める.
(2)
$\varsigma_2:IR^2\to IR^2$を
$\varsigma_2 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
x+1 \\
y-1
\end{pmatrix}$と定める.
(3)
$\varsigma_3:IR^2\to IR^2$を
$\varsigma_3 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
\vert x\vert \\
y
\end{pmatrix}$と定める.
(3)
$\varsigma_4:IR^2\to IR^2$を
$\varsigma_4 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
y \\
x
\end{pmatrix}$と定める.
線形代数:部分空間の判定 #線形代数 #部分空間 #ベクトル空間

単元:
#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数学(高校生)#数C
指導講師:
ますただ
問題文全文(内容文):
次の集合がベクトル空間の部分空間をなすか判定せよ.
(1)$W_1=\left[\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \in IR^3 | x\neq 2y\right]$
(2)$W_2=\left[\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \in IR^3 | x+2y+3z=0 \right]$
(3)$W_3=\left[\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \in IR^3 | x+2y+3z\geqq 0 \right]$
この動画を見る
次の集合がベクトル空間の部分空間をなすか判定せよ.
(1)$W_1=\left[\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \in IR^3 | x\neq 2y\right]$
(2)$W_2=\left[\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \in IR^3 | x+2y+3z=0 \right]$
(3)$W_3=\left[\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \in IR^3 | x+2y+3z\geqq 0 \right]$
17滋賀県教員採用試験 3番 極限について

単元:
#関数と極限#数列の極限#関数の極限#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{3}$
$\sqrt{\sqrt{3+{\sqrt{3+{\sqrt3+・・・}}}}}$の値を求めよ.
この動画を見る
$\boxed{3}$
$\sqrt{\sqrt{3+{\sqrt{3+{\sqrt3+・・・}}}}}$の値を求めよ.
20滋賀県教員採用試験(数学:2番 整数問題)

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{2}$
$x^2-xy-6y^2-2x+11y+5=0$をみたす
整数の組$(x,y)$をすべて求めよ.
この動画を見る
$\boxed{2}$
$x^2-xy-6y^2-2x+11y+5=0$をみたす
整数の組$(x,y)$をすべて求めよ.
#13数検1級1次過去問 複素関数

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{2}$
$z=a+bi$とする.
$e^z=-i$を解け.ただし,$0\leqq b\lt 2\pi$とする.
この動画を見る
$\boxed{2}$
$z=a+bi$とする.
$e^z=-i$を解け.ただし,$0\leqq b\lt 2\pi$とする.
20滋賀県教員採用試験(数学:1-(3) 因数分解)

単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{1}-(3)$
$3x^3+(y-3)x^2-y$を因数分解せよ.
この動画を見る
$\boxed{1}-(3)$
$3x^3+(y-3)x^2-y$を因数分解せよ.
19滋賀県教員採用試験(数学:3番 極限)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{3}$
$\displaystyle \lim_{x\to 0}\dfrac{1-\cos x}{\sqrt{1+x^2}\sqrt{1-x^2}}$を解け.
この動画を見る
$\boxed{3}$
$\displaystyle \lim_{x\to 0}\dfrac{1-\cos x}{\sqrt{1+x^2}\sqrt{1-x^2}}$を解け.
06京都府教員採用試験(数学:1-(4) 複素数)

単元:
#数Ⅱ#複素数と方程式#複素数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{1}-(4)$
$z=\dfrac{\sqrt6+\sqrt2}{4}+\dfrac{\sqrt6-\sqrt2}{4}i$のとき,
$z^{2005}$の値を求めよ.
この動画を見る
$\boxed{1}-(4)$
$z=\dfrac{\sqrt6+\sqrt2}{4}+\dfrac{\sqrt6-\sqrt2}{4}i$のとき,
$z^{2005}$の値を求めよ.
【修正版】06京都府教員採用試験(数学:3番 ネピアの数 e<2.75)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{3}$
$n:$を自然数とする.
$\displaystyle \lim_{n\to\infty} \left(1+\dfrac{1}{n}\right)^n=e \lt 2.75$
これを解け.
この動画を見る
$\boxed{3}$
$n:$を自然数とする.
$\displaystyle \lim_{n\to\infty} \left(1+\dfrac{1}{n}\right)^n=e \lt 2.75$
これを解け.
07京都府教員採用試験(数学:3番 極限)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{3}$
$\displaystyle \lim_{n\to\infty} n^2\left(1-\cos\dfrac{2}{n}\right)$を求めよ.
この動画を見る
$\boxed{3}$
$\displaystyle \lim_{n\to\infty} n^2\left(1-\cos\dfrac{2}{n}\right)$を求めよ.
#12数検1級1次過去問 極限(マクローリン展開)Σn^2/n!

単元:
#数学検定・数学甲子園・数学オリンピック等#関数と極限#数列の極限#関数の極限#数学検定#数学検定準1級#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\boxed{6}$
$\displaystyle \sum_{n=1}^{\infty}\dfrac{n^2}{n!}$を求めよ.
この動画を見る
$\boxed{6}$
$\displaystyle \sum_{n=1}^{\infty}\dfrac{n^2}{n!}$を求めよ.
#11数検1級1次過去問

単元:
#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#数学検定#数学検定準1級
指導講師:
ますただ
問題文全文(内容文):
$\boxed{1}$
$x^4-4x^3+x^2-3=0$を解け.
この動画を見る
$\boxed{1}$
$x^4-4x^3+x^2-3=0$を解け.
#10数検準1級1次 複素数

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{4}$
$z=-2-i$の偏角を$\theta$とする.
$\sin4\theta$の値を求めよ.
この動画を見る
$\boxed{4}$
$z=-2-i$の偏角を$\theta$とする.
$\sin4\theta$の値を求めよ.
#9数検準1級1次過去問 極限

単元:
#数学検定・数学甲子園・数学オリンピック等#関数と極限#数列の極限#関数の極限#数学検定#数学検定準1級#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\boxed{7}$
$\displaystyle \lim_{x\to 1}\dfrac{x^2+2x-3}{\sqrt[3]x-1}$を求めよ.
この動画を見る
$\boxed{7}$
$\displaystyle \lim_{x\to 1}\dfrac{x^2+2x-3}{\sqrt[3]x-1}$を求めよ.
07愛知県教員採用試験(数学:6番 対数関数)

単元:
#数Ⅱ#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{6}$
$f(x)=\log_2 (x+2)+\log_4 (4-x)$の
最大値を求めよ.
この動画を見る
$\boxed{6}$
$f(x)=\log_2 (x+2)+\log_4 (4-x)$の
最大値を求めよ.
06愛知県教員採用試験(数学:8-(1) 極限)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{8}-(1)$
$\displaystyle \lim_{x\to 0} \dfrac{\tan x-\sin x}{x^3}$を求めよ.
この動画を見る
$\boxed{8}-(1)$
$\displaystyle \lim_{x\to 0} \dfrac{\tan x-\sin x}{x^3}$を求めよ.
06愛知県教員採用試験(数学8-(2) 極限)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{8}-(2)$
$\displaystyle \lim_{x\to\infty} \ x\log \left(1+\dfrac{3}{x}\right)$を求めよ.
この動画を見る
$\boxed{8}-(2)$
$\displaystyle \lim_{x\to\infty} \ x\log \left(1+\dfrac{3}{x}\right)$を求めよ.
06愛知県教員採用試験(数学:6番 指数)

単元:
#数Ⅱ#複素数と方程式#指数関数と対数関数#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{6}$
$x$の方程式$4^x-2a\ 2^x+2a^2-a-6=0$が
正負が解を1つずつもつとき,
$a$の値の範囲を求めよ.
この動画を見る
$\boxed{6}$
$x$の方程式$4^x-2a\ 2^x+2a^2-a-6=0$が
正負が解を1つずつもつとき,
$a$の値の範囲を求めよ.
#8数検1級1次過去問 重積分積分順序の変更

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\boxed{7}$
以下を解け.
$\displaystyle \int_{0}^{3} dy \displaystyle \int_{0}^{\sqrt{\frac{y}{3}}}\ \log(x^3-3x+3)dx$
この動画を見る
$\boxed{7}$
以下を解け.
$\displaystyle \int_{0}^{3} dy \displaystyle \int_{0}^{\sqrt{\frac{y}{3}}}\ \log(x^3-3x+3)dx$
