19神奈川県教員採用試験(数学:関数の最大値) - 質問解決D.B.(データベース)

19神奈川県教員採用試験(数学:関数の最大値)

問題文全文(内容文):
$y=-(x^2+2x)^2+4(x^2+2x)+\frac{7}{2} \quad (-2 \leqq x \leqq 1)$の値域に含まれる最大の整数を求めよ。
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$y=-(x^2+2x)^2+4(x^2+2x)+\frac{7}{2} \quad (-2 \leqq x \leqq 1)$の値域に含まれる最大の整数を求めよ。
投稿日:2020.05.22

<関連動画>

【高校数学】命題と証明の例題~できなやばい問題~ 1-18.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$x, y$は実数、$n$は整数とする。次の命題を証明せよ。
(a) $x^3 \neq 8 \Rightarrow x \neq 2$
(b) $x + y \gt 7 \Rightarrow \lceil x \gt 4 または y \gt 3 \rfloor$
(c) $n^2が7の倍数でないならば、nは7の倍数でない$

-----------------

2⃣
$\lceil m^2 + n^2 が奇数ならば、m,nのうち一方は奇数であり、他方は偶数である。\rfloor$
という命題を証明せよ
この動画を見る 

2次関数の最大と最小条件式つき【野本さんちのツトムくんがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) $2x+y=1$のとき,$x^2+y^2$の最小値を求めよ。
(2) $x+2y+3=0$のとき,$xy$の最大値を求めよ。

$x\geqq O, y\geqq O, x+y=4$のとき,xのとりうる値の範囲を求めよ。また、$x^2+2y^2$の最大値と最小値を求めよ。
この動画を見る 

一定であることの証明 慶應志木

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
PD+PE=一定であることを証明せよ。
*図は動画内参照

慶應義塾志木高等学校
この動画を見る 

因数分解 國学院久我山

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$4(2x+ \frac{y}{2})^2 - 4( \frac{x}{2} - 2y)^2$

國學院大學久我山高等学校
この動画を見る 

【短時間でマスター!!】2次関数のグラフの書き方を解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
2次関数のグラフの書き方について解説します。
$y=x^2-6x+3$
$y=-2x^2+8x-3$
この動画を見る 
PAGE TOP