理数個別チャンネル
理数個別チャンネル
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
【英語】関係詞:which VS whereの見分け方!【関係代名詞か関係副詞か】

単元:
#英語(高校生)#英文法#関係代名詞・関係副詞・複合関係詞
指導講師:
理数個別チャンネル
問題文全文(内容文):
関係代名詞のwhichと関係副詞のwhereを正しく見分ける方法を教えます!
この動画を見る
関係代名詞のwhichと関係副詞のwhereを正しく見分ける方法を教えます!
【英語】be used to~ingを正確に書かないと魚が喋りだす!?

単元:
#英語(中学生)#英語(高校生)#英文法#中2英語#中3英語#助動詞#不定詞#前置詞#不定詞(名詞的用法・形容詞的用法・副詞的用法)#動名詞(動詞の目的語、主語・補語・前置詞の目的語、動名詞と不定詞)#未来の文・助動詞(will,be going to,can,could,may,might,must,have to,should,shall,would,had better,used to,ought to)#不定詞(疑問詞+to,It~for to,ask(tell,want)O to,too~to,enough~to,not to)
指導講師:
理数個別チャンネル
問題文全文(内容文):
used toとbe used to原形とbe used to ingの違いを
具体例を用いて分かりやすく説明します!
この動画を見る
used toとbe used to原形とbe used to ingの違いを
具体例を用いて分かりやすく説明します!
【数Ⅲ】微分法:三角関数の微分公式+演習

単元:
#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数を微分しよう。
①$y=2\cos\dfrac{5x}{2}\sin\dfrac{x}{2}$
②$y=\sin^3 x$
この動画を見る
次の関数を微分しよう。
①$y=2\cos\dfrac{5x}{2}\sin\dfrac{x}{2}$
②$y=\sin^3 x$
【中学数学】中高一貫校問題集1(代数編)267:正の数と負の数:四則の混じった計算:魔方陣

単元:
#数学(中学生)#中1数学#正の数・負の数
教材:
#TK数学#TK数学問題集1(代数編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
右の表において、縦・横・斜めの数の和が全て等しくなるようにしたい。ア~キにあてはまる数を、それぞれ求めよう。
この動画を見る
右の表において、縦・横・斜めの数の和が全て等しくなるようにしたい。ア~キにあてはまる数を、それぞれ求めよう。
【中学数学】中高一貫校用問題集(代数編)正の数と負の数:四則の混じった計算:魔方陣

単元:
#数学(中学生)#中1数学#正の数・負の数
教材:
#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
右の表において、縦・横・斜めの数の和が全て等しくなるようにしたい。ア~キにあてはまる数を、それぞれ求めよう。
この動画を見る
右の表において、縦・横・斜めの数の和が全て等しくなるようにしたい。ア~キにあてはまる数を、それぞれ求めよう。
【数Ⅲ】微分法:指数対数の微分、演習

単元:
#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数を微分しよう
(1)$y=\log(x^2+1)$ (2)$y=\log_2\vert 2x\vert $
(3)$y=\log\vert \tan x\vert $ (4)$y=\log\vert \sin x\vert$
(5)$y=e^(2x)$ (6)$y=2^(-3x)$
(7)$y=e^x \sin x$ (8)$y=\log\dfrac{x}{x}$
(9)$y=(\log x)^3$ (10)$y=\log_2\vert \cos x\vert $
(11)$y=\log(\log x)$ (12)$y=a-(-2x+1)$
(13)$y=2^{\sin x}$ (14)$y=\log_3\dfrac{x}{3^x}$
この動画を見る
次の関数を微分しよう
(1)$y=\log(x^2+1)$ (2)$y=\log_2\vert 2x\vert $
(3)$y=\log\vert \tan x\vert $ (4)$y=\log\vert \sin x\vert$
(5)$y=e^(2x)$ (6)$y=2^(-3x)$
(7)$y=e^x \sin x$ (8)$y=\log\dfrac{x}{x}$
(9)$y=(\log x)^3$ (10)$y=\log_2\vert \cos x\vert $
(11)$y=\log(\log x)$ (12)$y=a-(-2x+1)$
(13)$y=2^{\sin x}$ (14)$y=\log_3\dfrac{x}{3^x}$
【数Ⅰ】2次関数:2変数関数の最大最小

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$x\geqq 0,y\geqq 0,x+y=4$のとき、次の問いに答えよう。
(1)xのとりうる値の範囲を求めよう。
(2)$x^2+y^2$の最小値と、最小値をとるx,yの値を求めよう。
(3)$x^2+y^2$の最大値と、最大値をとるx,yの値を求めよう。
この動画を見る
$x\geqq 0,y\geqq 0,x+y=4$のとき、次の問いに答えよう。
(1)xのとりうる値の範囲を求めよう。
(2)$x^2+y^2$の最小値と、最小値をとるx,yの値を求めよう。
(3)$x^2+y^2$の最大値と、最大値をとるx,yの値を求めよう。
【化学】理論化学:希薄な塩酸のpH

単元:
#化学#化学基礎2ー物質の変化#酸と塩基・水素イオン濃度#理科(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$1.0\times 10^{-7}$mol/LHCl水溶液のpHを求めよ。
ただし、$pKw=14、\log_{10}2=0.30、\sqrt5=2.2$とする
この動画を見る
$1.0\times 10^{-7}$mol/LHCl水溶液のpHを求めよ。
ただし、$pKw=14、\log_{10}2=0.30、\sqrt5=2.2$とする
【化学】理論化学:熱化学方程式不完全燃焼

単元:
#化学#化学理論#物質の変化と熱・光#理科(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次のベンゼンの不完全燃焼の熱化学方程式を用いて ベンゼンの燃焼熱を求めよ。ただし、CO₂(気)と CO(気)の生成熱は394kj,111kjとする。
C₆H₆(液)+25/4O₂=1/2C(黒鉛)+CO(気) +4CO₂(気)+H₂0(液)
この動画を見る
次のベンゼンの不完全燃焼の熱化学方程式を用いて ベンゼンの燃焼熱を求めよ。ただし、CO₂(気)と CO(気)の生成熱は394kj,111kjとする。
C₆H₆(液)+25/4O₂=1/2C(黒鉛)+CO(気) +4CO₂(気)+H₂0(液)
【数Ⅲ】極限:三角関数の合成の利用

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよう。
$\displaystyle \lim_{x\to\dfrac{\pi}{4}}\dfrac{\sin x-\cos x}{x-\dfrac{\pi}{4}}$
この動画を見る
次の極限値を求めよう。
$\displaystyle \lim_{x\to\dfrac{\pi}{4}}\dfrac{\sin x-\cos x}{x-\dfrac{\pi}{4}}$
【数Ⅲ】極限:三角関数と極限(sinx/x=1の利用3)

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよう。
$\displaystyle \lim_{x\to\infty}\dfrac{\sin\left(\dfrac{\sin x}{\pi}\right)}{x}$
この動画を見る
次の極限値を求めよう。
$\displaystyle \lim_{x\to\infty}\dfrac{\sin\left(\dfrac{\sin x}{\pi}\right)}{x}$
【数Ⅲ】極限:三角関数と極限(sinx/x=1の利用2)

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよう。
$\displaystyle \lim_{x\to\infty}\dfrac{\sin x}{x^0}$
この動画を見る
次の極限値を求めよう。
$\displaystyle \lim_{x\to\infty}\dfrac{\sin x}{x^0}$
【数Ⅲ】極限:三角関数と極限(sinx/x=1の利用1)

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよう。
$\displaystyle \lim_{x\to\infty}x\sin・\dfrac{1}{x}$
この動画を見る
次の極限値を求めよう。
$\displaystyle \lim_{x\to\infty}x\sin・\dfrac{1}{x}$
【数Ⅲ】積分法の応用:~授業風景シリーズ~ 回転体の体積 後編

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#チャート式#青チャートⅢ#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
【高校数学 数学Ⅲ 積分法の応用】
$y=\sin2x, y=\cos2x\left(\dfrac{\pi}{8}\leqq x\leqq\dfrac{5\pi}{8}\right)$で囲まれた部分をx軸の周りに回転して出来る立体の体積を求めよ。
この動画を見る
【高校数学 数学Ⅲ 積分法の応用】
$y=\sin2x, y=\cos2x\left(\dfrac{\pi}{8}\leqq x\leqq\dfrac{5\pi}{8}\right)$で囲まれた部分をx軸の周りに回転して出来る立体の体積を求めよ。
【数Ⅲ】積分法の応用:~授業風景シリーズ~ 回転体の体積 前編

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#チャート式#青チャートⅢ#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
【高校数学 数学Ⅲ 積分法の応用】
$y=x^2+1,x=1,x=2$,x軸で囲まれた部分をx軸の周りに回転してできる立体の体積を求めよ。
この動画を見る
【高校数学 数学Ⅲ 積分法の応用】
$y=x^2+1,x=1,x=2$,x軸で囲まれた部分をx軸の周りに回転してできる立体の体積を求めよ。
【受験算数】 速さ:家から900m離れた学校へ、初めは分速50mの速さで歩いた。間に合いそうになかったので途中から分速80mの速さで走ると15分かかった。では走り始めたのは家を出てから何分後でしょう。

単元:
#算数(中学受験)#速さ#速さその他
教材:
#予習シ#予習シ算数・小5上#中学受験教材#速さ
指導講師:
理数個別チャンネル
問題文全文(内容文):
家から900m離れた学校へ、初めは分速50mの速さで歩いた。間に合いそうになかったので途中から分速80mの速さで走ると15分かかった。では走り始めたのは家を出てから何分後でしょう。【予習シリーズ 5年生】【速さ】
この動画を見る
家から900m離れた学校へ、初めは分速50mの速さで歩いた。間に合いそうになかったので途中から分速80mの速さで走ると15分かかった。では走り始めたのは家を出てから何分後でしょう。【予習シリーズ 5年生】【速さ】
【受験算数】速さ:弟は分速54mの速さで学校に向かったが忘れものに気づいた兄はその5分後に弟を追いかけると15分で追いついた。兄の速さは分速何mでしょう。

単元:
#算数(中学受験)#速さ#旅人算・通過算・流水算
教材:
#予習シ#予習シ算数・小5上#中学受験教材#速さ
指導講師:
理数個別チャンネル
問題文全文(内容文):
弟は分速54mの速さで学校に向かったが忘れものに気づいた兄はその5分後に弟を追いかけると15分で追いついた。兄の速さは分速何mでしょう。【予習シリーズ 5年生】【速さ】
この動画を見る
弟は分速54mの速さで学校に向かったが忘れものに気づいた兄はその5分後に弟を追いかけると15分で追いついた。兄の速さは分速何mでしょう。【予習シリーズ 5年生】【速さ】
【理数個別の過去問解説】2011年度東京大学 数学 文系理系第1問(2)解説

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
座標平面において、点P(0,1)を中心とする半径1の円をCとする。aが$0<a<1$を満たす実数とし、直線$y=a(x+1)$とCとの交点をQ,Rとする。
(1) △PQRの面積S(a)を求めよ。
(2) aが$0<a<1$の範囲を動くとき、S(a)が最大となるaを求めよ。
この動画を見る
座標平面において、点P(0,1)を中心とする半径1の円をCとする。aが$0<a<1$を満たす実数とし、直線$y=a(x+1)$とCとの交点をQ,Rとする。
(1) △PQRの面積S(a)を求めよ。
(2) aが$0<a<1$の範囲を動くとき、S(a)が最大となるaを求めよ。
【理数個別の過去問解説】2011年度東京大学 数学 文系理系第1問(1)解説

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
座標平面において、点P(0,1)を中心とする半径1の円をCとする。aが$0<a<1$を満たす実数とし、直線$y=a(x+1)$とCとの交点をQ,Rとする。
(1) △PQRの面積$S(a)$を求めよ。
(2) aが$0<a<1$の範囲を動くとき、$S(a)$が最大となるaを求めよ。
この動画を見る
座標平面において、点P(0,1)を中心とする半径1の円をCとする。aが$0<a<1$を満たす実数とし、直線$y=a(x+1)$とCとの交点をQ,Rとする。
(1) △PQRの面積$S(a)$を求めよ。
(2) aが$0<a<1$の範囲を動くとき、$S(a)$が最大となるaを求めよ。
【数Ⅲ】微分法:対数微分、この計算式をどうしますか?

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$f(x)=(1+a^x)^{\frac{1}{x}}$は,$0<a<1$の時単調である
[上級問題精講数学Ⅲ、416(1)]
この動画を見る
$f(x)=(1+a^x)^{\frac{1}{x}}$は,$0<a<1$の時単調である
[上級問題精講数学Ⅲ、416(1)]
【数学】(一気見用)高2生必見!! 2019年度8月 第2回 K塾高2模試(※大問1(3)、大問5(*)式に訂正あり)

【数B】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問7_ベクトル

単元:
#大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)$GF=tAB$(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)$AB=\sqrt3,AB・AC=-1,AC=\sqrt7$とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)$AH=kAB$(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
この動画を見る
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)$GF=tAB$(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)$AB=\sqrt3,AB・AC=-1,AC=\sqrt7$とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)$AH=kAB$(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
【数B】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問6_数列

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
数列{$a_n$}($n=1,2,3,...$)は初項-8、公差4の等差数列であり、数列{$b_n$} ($n=1,2,3,...$)は初項から第n項までの和が$S_n\dfrac{3^n}{2}(n=1,2,3,...)$で与えられ る数列である。
(1)数列{$a_n$}の一般項$a_n$を求めよ。また、数列{$a_n$}の初項から第n項までの 和を求めよ。 (2)$\displaystyle \sum_{k=1}^n (a_k)^2$を求めよ。
(3)数列{$b_n$}の一般項$b_n$を求めよ。 (4)nを3以上の整数とするとき、$\displaystyle \sum_{k=1}^n \vert a_k b_k \vert$を求めよ。
この動画を見る
数列{$a_n$}($n=1,2,3,...$)は初項-8、公差4の等差数列であり、数列{$b_n$} ($n=1,2,3,...$)は初項から第n項までの和が$S_n\dfrac{3^n}{2}(n=1,2,3,...)$で与えられ る数列である。
(1)数列{$a_n$}の一般項$a_n$を求めよ。また、数列{$a_n$}の初項から第n項までの 和を求めよ。 (2)$\displaystyle \sum_{k=1}^n (a_k)^2$を求めよ。
(3)数列{$b_n$}の一般項$b_n$を求めよ。 (4)nを3以上の整数とするとき、$\displaystyle \sum_{k=1}^n \vert a_k b_k \vert$を求めよ。
【数C】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問7_ベクトル

単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#全統模試(河合塾)#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)GF=tAB(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)AB=√3,AB・AC=-1,AC=√7とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)AH=kAB(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
この動画を見る
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)GF=tAB(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)AB=√3,AB・AC=-1,AC=√7とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)AH=kAB(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
【数Ⅱ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問5_三角関数 (※(*)式に訂正あり)

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
aを正の整数とする。$\theta$の方程式$ \sin(a\theta)+\sqrt3\cos(a\theta)=1$ ・・・(*) がある。
(1)$\sin(\theta+\dfrac{\pi}{3}$)を$\sin\theta, \cos\theta$の式で表せ。
(2)$a=1$のとき、(*)を$0\leqq\theta\lt 2\pi$において表せ。
(3)(*)の$\theta\geqq 0$を満たすθのうち、小さい方から4つをaを用いて表せ。
(4)Nを正の整数とする。$0\leqq\lt 2\pi$において、(*)の解がちょうど2N個存在するようなaの値の範囲をNを用いて表せ。
この動画を見る
aを正の整数とする。$\theta$の方程式$ \sin(a\theta)+\sqrt3\cos(a\theta)=1$ ・・・(*) がある。
(1)$\sin(\theta+\dfrac{\pi}{3}$)を$\sin\theta, \cos\theta$の式で表せ。
(2)$a=1$のとき、(*)を$0\leqq\theta\lt 2\pi$において表せ。
(3)(*)の$\theta\geqq 0$を満たすθのうち、小さい方から4つをaを用いて表せ。
(4)Nを正の整数とする。$0\leqq\lt 2\pi$において、(*)の解がちょうど2N個存在するようなaの値の範囲をNを用いて表せ。
【数A】高2生必見!! 2019年8月 第2回 K塾高2模試 大問4_確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
Oを原点とする座標平面上に点Pがある。最初、Pは原点Oにあり、1個のサイコロ を1回投げるごとに次の(規則)に従ってPを動かす。 (規則) ・1,2いずれかの目が出たときはx軸の正の方向に1だけ動かす。 ・3の目が出たときはx軸の正の方向に2だけ動かす。 ・4,5,6いずれかの目が出たときはy軸の正の方向に1だけ動かす。 例えば、さいころを2回投げて、1回目に2の目、2回目に5の目が出たとき、Pは O(0,0)→点(1,0)→点(1,1) と動く。
(1)サイコロを3回投げたとき、Pの座標が(3,0)である確率を求めよ。
(2)サイコロを3回投げたとき、Pのy座標が2である確率を求めよ。
(3)サイコロを6回投げたとき、Pの座標が(5,2)である確率を求めよ。
(4)サイコロを6回投げたとき、Pのx座標が5であったという条件のもとで、Pのy 座標が2である条件付き確率を求めよ。
この動画を見る
Oを原点とする座標平面上に点Pがある。最初、Pは原点Oにあり、1個のサイコロ を1回投げるごとに次の(規則)に従ってPを動かす。 (規則) ・1,2いずれかの目が出たときはx軸の正の方向に1だけ動かす。 ・3の目が出たときはx軸の正の方向に2だけ動かす。 ・4,5,6いずれかの目が出たときはy軸の正の方向に1だけ動かす。 例えば、さいころを2回投げて、1回目に2の目、2回目に5の目が出たとき、Pは O(0,0)→点(1,0)→点(1,1) と動く。
(1)サイコロを3回投げたとき、Pの座標が(3,0)である確率を求めよ。
(2)サイコロを3回投げたとき、Pのy座標が2である確率を求めよ。
(3)サイコロを6回投げたとき、Pの座標が(5,2)である確率を求めよ。
(4)サイコロを6回投げたとき、Pのx座標が5であったという条件のもとで、Pのy 座標が2である条件付き確率を求めよ。
【数Ⅱ】高2生必見!! 2019年8月 第2回 K塾高2模試 大問3_式と 証明・複素数と方程式

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
a,bを実数定数とする。xの方程式 $x^3+(1-a)x^2+3x+b=0$・・・(*) は$x=-1$を解にもつ。
(1)bをaを用いて表せ。
(2)$a=1$のとき、(*)を解け。
(3)(*)が異なる3個の実数解をもつようなaの値の範囲を求めよ。
(4)(3)のとき、(*)の-1以外の解を$\alpha,\beta$とする。 $f(x)=x^2+cx+d$ (c,dは実数の定数) が次の(条件)を満たすとき、c,dの値の組(c,d)を求めよ。 (条件) $f(α)=\dfrac{1}{\beta} f(\beta)=\dfrac{1}{\alpha} f(-1)=-1$
この動画を見る
a,bを実数定数とする。xの方程式 $x^3+(1-a)x^2+3x+b=0$・・・(*) は$x=-1$を解にもつ。
(1)bをaを用いて表せ。
(2)$a=1$のとき、(*)を解け。
(3)(*)が異なる3個の実数解をもつようなaの値の範囲を求めよ。
(4)(3)のとき、(*)の-1以外の解を$\alpha,\beta$とする。 $f(x)=x^2+cx+d$ (c,dは実数の定数) が次の(条件)を満たすとき、c,dの値の組(c,d)を求めよ。 (条件) $f(α)=\dfrac{1}{\beta} f(\beta)=\dfrac{1}{\alpha} f(-1)=-1$
【数Ⅱ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問2-2_図形と方程式

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
mを実数の定数とする。xy平面上に 円$C:x^2+y^2-2x-6y+9=0$ 直線$l:y=mx$ がある。
(1)Cの中心の座標と半径を求めよ。
(2)Cとlが接するようなmの値を求めよ。
(3)(2)のときのCとlの接点をPとする。Pにおいてlに接し、x軸上に中心があるような円の方程式を求めよ
この動画を見る
mを実数の定数とする。xy平面上に 円$C:x^2+y^2-2x-6y+9=0$ 直線$l:y=mx$ がある。
(1)Cの中心の座標と半径を求めよ。
(2)Cとlが接するようなmの値を求めよ。
(3)(2)のときのCとlの接点をPとする。Pにおいてlに接し、x軸上に中心があるような円の方程式を求めよ
【数Ⅰ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問2-1_2次関数

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
実数xについての2つの不等式$ (x-a^2)(x-2a+2)\leqq 0$・・・①$\vert 2x-1\vert\leqq 2$・・・② がある。ただし、aは実数の定数とする。
(1)$a=0$のとき、①を解け。
(2)②を解け。
(3)①かつ②を満たす整数xがちょうど1個だけ存在するようなaの値の範囲を求めよ。
この動画を見る
実数xについての2つの不等式$ (x-a^2)(x-2a+2)\leqq 0$・・・①$\vert 2x-1\vert\leqq 2$・・・② がある。ただし、aは実数の定数とする。
(1)$a=0$のとき、①を解け。
(2)②を解け。
(3)①かつ②を満たす整数xがちょうど1個だけ存在するようなaの値の範囲を求めよ。
【数学】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問1_小問集合 (※(3)問題文に訂正あり)

単元:
#大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)$(x+y+2)^2$を展開せよ。
(2)$\dfrac{x^2-2x}{x^2+4x+3}\times\dfrac{2x+2}{x-2}$を計算せよ。
(3)2次関数$y=2x^2-8x+9 (0\leqq x\leqq 1)$における最小値を求めよ。
(4)iを虚数単位とする。$\dfrac{2+i}{1-3i}$を$a+bi$(a,bは実数)の形で表せ。
(5)$AB=3, BC=4\sqrt2, CA=5$である三角形ABCにおいて、$\cos\angle ABC$を求めよ。また、三 角形ABCの面積を求めよ。
(6)男子6人、女子4人の合計10人から3人を選ぶとき、選び方は全部で何通りか。 また、そのうち、女子が少なくとも1人含まれるような選び方は何通りか。
この動画を見る
(1)$(x+y+2)^2$を展開せよ。
(2)$\dfrac{x^2-2x}{x^2+4x+3}\times\dfrac{2x+2}{x-2}$を計算せよ。
(3)2次関数$y=2x^2-8x+9 (0\leqq x\leqq 1)$における最小値を求めよ。
(4)iを虚数単位とする。$\dfrac{2+i}{1-3i}$を$a+bi$(a,bは実数)の形で表せ。
(5)$AB=3, BC=4\sqrt2, CA=5$である三角形ABCにおいて、$\cos\angle ABC$を求めよ。また、三 角形ABCの面積を求めよ。
(6)男子6人、女子4人の合計10人から3人を選ぶとき、選び方は全部で何通りか。 また、そのうち、女子が少なくとも1人含まれるような選び方は何通りか。
