鹿児島大学
【高校数学】毎日積分58日目~47都道府県制覇への道~【②鹿児島】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$x>0$で定義された曲線
$C : y=(log x)^2$
を考える
(1)$a$を正の実数とする時、点$P(a,(log a)^2)$における曲線$C$の接線$L$の方程式を求めよ。
(2)$a>1$のとき、接線$L$と$x$軸の交点の$x$座標が最大となる場合の$a$の値$a_0$を求めよ。
(3)$a$の値が(2)の$a_0$に等しいとき、直線$L$の$y≧0$の部分と曲線$C$と$x$軸で囲まれた部分を、$x$軸の周りに1回転させてできる図形の体積を求めよ。
【鹿児島大学 2023】
この動画を見る
$x>0$で定義された曲線
$C : y=(log x)^2$
を考える
(1)$a$を正の実数とする時、点$P(a,(log a)^2)$における曲線$C$の接線$L$の方程式を求めよ。
(2)$a>1$のとき、接線$L$と$x$軸の交点の$x$座標が最大となる場合の$a$の値$a_0$を求めよ。
(3)$a$の値が(2)の$a_0$に等しいとき、直線$L$の$y≧0$の部分と曲線$C$と$x$軸で囲まれた部分を、$x$軸の周りに1回転させてできる図形の体積を求めよ。
【鹿児島大学 2023】
数学「大学入試良問集」【2−4 剰余の定理•商と余り】を宇宙一わかりやすく
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$x$の整式$p(x)$を$x-3$で割った余りは$2,(x-2)^2$で割った余りは$x+1$である。
$p(x)$を$(x-2)^2$で割った商は$q(x)$とするとき、$q(x)$を$x-3$で割った余りを求めよ。
(2)
$p(x)$は(1)と同じ条件を満たすものとする。
このとき、$xp(x)$を$(x-3)(x-2)^2$で割った余りを求めよ。
この動画を見る
次の問いに答えよ。
(1)
$x$の整式$p(x)$を$x-3$で割った余りは$2,(x-2)^2$で割った余りは$x+1$である。
$p(x)$を$(x-2)^2$で割った商は$q(x)$とするとき、$q(x)$を$x-3$で割った余りを求めよ。
(2)
$p(x)$は(1)と同じ条件を満たすものとする。
このとき、$xp(x)$を$(x-3)(x-2)^2$で割った余りを求めよ。
鹿児島大(医)連立漸化式
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=2,b_1=1$
$a_{n+1}=2a_n+3b_n-2$
$b_{n+1}=a_n+4b_n+2$
一般項$a_n$を求めよ
出典:2017年鹿児島大学医学部 過去問
この動画を見る
$a_1=2,b_1=1$
$a_{n+1}=2a_n+3b_n-2$
$b_{n+1}=a_n+4b_n+2$
一般項$a_n$を求めよ
出典:2017年鹿児島大学医学部 過去問
鹿児島大 漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=1$ 一般項を求めよ
$a_{n+1}=2a_n+3n^2+3n$
出典:2019年鹿児島大学 過去問
この動画を見る
$a_1=1$ 一般項を求めよ
$a_{n+1}=2a_n+3n^2+3n$
出典:2019年鹿児島大学 過去問
鹿児島大(医他)数列の和 高校数学 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sum_{k=1}^{n} \displaystyle \frac{2k-1}{2^k}$
出典:鹿児島大学 過去問
この動画を見る
$\sum_{k=1}^{n} \displaystyle \frac{2k-1}{2^k}$
出典:鹿児島大学 過去問
鹿児島(医)慶應(理) 高校数学 Japanese university entrance exam questions
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#複素数平面#集合と命題(集合・命題と条件・背理法)#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
鹿児島大学過去問題・類慶応義塾大学
二つの整数の平方の和で表される数
全体からなる集合をA
・x,yが集合Aの要素であるとき、積xyも集合Aの要素であることを証明せよ
・5および$5^5$は集合Aの要素であることを示せ
この動画を見る
鹿児島大学過去問題・類慶応義塾大学
二つの整数の平方の和で表される数
全体からなる集合をA
・x,yが集合Aの要素であるとき、積xyも集合Aの要素であることを証明せよ
・5および$5^5$は集合Aの要素であることを示せ