大阪市立大学
大阪市立大 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
20216大阪市立大学過去問題
x,y整数 n自然数
$x^2+y^2$が$3^{2n-1}$の倍数ならx,yともに$3^n$の倍数であることを示せ
①n=1のとき
②n=2のとき
③すべての自然数n
この動画を見る
20216大阪市立大学過去問題
x,y整数 n自然数
$x^2+y^2$が$3^{2n-1}$の倍数ならx,yともに$3^n$の倍数であることを示せ
①n=1のとき
②n=2のとき
③すべての自然数n
大阪市立大 いい問題
単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#大阪市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
2021大阪市立大学
単位円に内接する正n角形の面積を$A_n$
単位円に内接する正n角形の各辺の中点を結んでできる正n角形の面積を$B_n$
①②$A_n$,$B_n$をnを用いて
③$\displaystyle\lim_{n \to \infty}B_n$を求めよ
④$n \geqq 32$のとき$\frac{B_n}{A_n}>\frac{99}{100}$を示せ
この動画を見る
2021大阪市立大学
単位円に内接する正n角形の面積を$A_n$
単位円に内接する正n角形の各辺の中点を結んでできる正n角形の面積を$B_n$
①②$A_n$,$B_n$をnを用いて
③$\displaystyle\lim_{n \to \infty}B_n$を求めよ
④$n \geqq 32$のとき$\frac{B_n}{A_n}>\frac{99}{100}$を示せ
大阪市立大 奇数の平方の和
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
2021大阪市立大学
nは奇数
$S_n=1+3+5+7+\cdots+n$
$T_n=1^2+3^2+5^2+7^2+\cdots+n^2$
①$S_n$,$T_n$をnの式で表せ
②$T_n$がnで割り切れるためのnの条件
この動画を見る
2021大阪市立大学
nは奇数
$S_n=1+3+5+7+\cdots+n$
$T_n=1^2+3^2+5^2+7^2+\cdots+n^2$
①$S_n$,$T_n$をnの式で表せ
②$T_n$がnで割り切れるためのnの条件
大阪市立大 奇数の和 奇数の平方の和
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は3以上の奇数である.
$S_n=1+3+5+・・・・+n$
$T_n=1^2+3^2+5^2+・・・・n^2$
①$S_n$は$n$で割り切れないことを示せ.
②$T_n$が$n$で割り切れるための$n$の条件を求めよ.
2021大阪市立大過去問
この動画を見る
$n$は3以上の奇数である.
$S_n=1+3+5+・・・・+n$
$T_n=1^2+3^2+5^2+・・・・n^2$
①$S_n$は$n$で割り切れないことを示せ.
②$T_n$が$n$で割り切れるための$n$の条件を求めよ.
2021大阪市立大過去問
大阪市立大 微分と接線の基本問題
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#大阪市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+2x^2-4x$に$(0,k)$から引ける接線の数を求めよ
出典:大阪市立大学 過去問
この動画を見る
$f(x)=x^3+2x^2-4x$に$(0,k)$から引ける接線の数を求めよ
出典:大阪市立大学 過去問
大阪市立 整数問題 高校数学 Mathematics Japanese university entrance exam
単元:
#数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)#大阪市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt{ n(n+200) }$が自然数となる 自然数$n$
$n^2+200n=a^2$
出典:大阪市立大学 過去問
この動画を見る
$\sqrt{ n(n+200) }$が自然数となる 自然数$n$
$n^2+200n=a^2$
出典:大阪市立大学 過去問