立教大学
数学「大学入試良問集」【13−5 漸化式(割り算型)】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$\{a_n\}$は
$a_1=9,a_{n+1}=4a_n+5^n(n=1,2,・・・)$をみたす。このとき、次の問いに答えよ。
(1)$b_n=a_n-5^n$とおく。$b_{n+1}$を$b_n$で表せ。
(2)数列$\{a_n\}$の一般項を求めよ。
この動画を見る
数列$\{a_n\}$は
$a_1=9,a_{n+1}=4a_n+5^n(n=1,2,・・・)$をみたす。このとき、次の問いに答えよ。
(1)$b_n=a_n-5^n$とおく。$b_{n+1}$を$b_n$で表せ。
(2)数列$\{a_n\}$の一般項を求めよ。
立教大 2次方程式の解 Mathematics Japanese university entrance exam
単元:
#2次方程式#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-2(a-1)x+(a-2)^2=0$の2つの解を$\alpha,\beta$
$0 \lt \alpha \lt 1 \lt \beta \lt 2$となる$a$の範囲は?
出典:立教大学 過去問
この動画を見る
$x^2-2(a-1)x+(a-2)^2=0$の2つの解を$\alpha,\beta$
$0 \lt \alpha \lt 1 \lt \beta \lt 2$となる$a$の範囲は?
出典:立教大学 過去問
立教大 微分・積分 高校数学 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
立教大学過去問題
$f(x)=x^3+3x^2+4$に(1,a)からちょうど2本の接線が引ける。
最小のaに対して2本の接線とf(x)で囲まれる面積
この動画を見る
立教大学過去問題
$f(x)=x^3+3x^2+4$に(1,a)からちょうど2本の接線が引ける。
最小のaに対して2本の接線とf(x)で囲まれる面積
関西大 漸化式 高校数学 Mathematics Japanese university entrance exam
単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
関西大学過去問題
n自然数
$a_1=3 \quad\quad a_{n+1}=2a_n-n^2+n$
$a_n$をnで表せ
立教大学過去問題
$2^{18}-1$を素因数分解
この動画を見る
関西大学過去問題
n自然数
$a_1=3 \quad\quad a_{n+1}=2a_n-n^2+n$
$a_n$をnで表せ
立教大学過去問題
$2^{18}-1$を素因数分解
立教大 立体図形・関数最大値 信州大 指数方程式 高校数学 Japanese university entrance exam questions
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#信州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
立教大学過去問題
底面の直径が6高さが12の円錐に図のように円柱が内接している。円柱の体積の最大値
*図は動画内参照
信州大学過去問題
$2^{3x+2}-13・2^{2x}+11・2^x-2=0$を解け
この動画を見る
立教大学過去問題
底面の直径が6高さが12の円錐に図のように円柱が内接している。円柱の体積の最大値
*図は動画内参照
信州大学過去問題
$2^{3x+2}-13・2^{2x}+11・2^x-2=0$を解け