東京慈恵会医科大学 - 質問解決D.B.(データベース)

東京慈恵会医科大学

福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第4問〜正四面体の切り口の面積の最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
oを原点とするxyz 空間内に、xy平面上の放物線y=x²をy軸のまわりに回転してできる曲面Sと、正四面体OABCがあり、条件「3頂点A, B, CはS上にある」をみたしている。このとき、次の問いに答えよ。
(1)正四面体 OABCの1辺の長さを求めよ。
(2)正四面体 OABCが条件をみたしながら動くとき、xy平面による正四面体OABCの切り口の面積の最小値を求めよ。
この動画を見る 

福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第2問〜関数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
p2以上の自然数の定数とする。n=2, 3, 4...に対して、関数 fn(x)(n>0)

fn(x)=(1+xn)(1+xn+1)(1+xpn)

で定める。例えばp = 2のとき

f2(x)=(1+x2)(1+x3)(1+x4)

f3(x)=(1+x3)(1+x4)(1+x5)(1+x6)

である。f(x)=limnfn(x) (n>0)とおくとき、次の問に答えよ。

(1)t0のとき、不等式t1+tlog(1+t)t が成り立つことを示せ。ただし、対数は自然対数とする。

(2) f(x)を求めよ。
この動画を見る 

福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第2問〜関数列の極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
1 次の◻にあてはまる適切な数値を解答欄に記入せよ。
Aには赤玉3個、白玉1個、袋Bには赤玉1個、白玉3個が入っている。
「袋Aから2個の玉を取り出して袋Bに入れ、次に袋Bから2個の玉を取り出して袋Aに入れる」という操作を繰り返す。1回の操作の後、袋Aに白玉が2個以上ある確率は2回の操作の後、袋Aの中が白玉だけになる確率はである。
この動画を見る 

福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第1問〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
1 次の◻にあてはまる適切な数値を解答欄に記入せよ。
Aには赤玉3個、白玉1個、袋Bには赤玉1個、白玉3個が入っている。
「袋Aから2個の玉を取り出して袋Bに入れ、次に袋Bから2個の玉を取り出して袋Aに入れる」という操作を繰り返す。1回の操作の後、袋Aに白玉が2個以上ある確率は(ア)2回の操作の後、袋Aの中が白玉だけになる確率は(イ)である。
この動画を見る 

大学入試問題#731「手を動かす前に読みをいれる」 東京慈恵会医科大学(2004) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: ますただ
問題文全文(内容文):
θ0<θ<π2かつtanθ=2を満たすとする。
π4θdxsin4x

出典:2004年東京慈恵医科大学 入試問題
この動画を見る 

大学入試問題#673「何度も解いてるはず」 東京慈恵会医科大学(2001)

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: ますただ
問題文全文(内容文):
01log(x2+3)dx

出典:2001年東京慈恵会医科大学 入試問題
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第4問〜ベクトル方程式と関数の増減

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数C#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
4 Oを原点とする座標空間に2点A(0,0,1), B(0,0,-1)がある。r>0, -π≦θ<πに対して、2点P(rcosθ,rsinθ,0),Q(1rcosθ,1rsinθ,0)をとり、2直線APとBQの交点をR(a,b,c)とするとき、次の問いに答えよ。
(1)a,b,cの間に成り立つ関係式を求めよ。
(2)点G(4,1,1)をとる。r,θがrcosθ=12を満たしながら変化するとき、内積OGORの最大値とそのときのa,b,cの値を求めよ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第3問〜無理数である証明

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
3 Oを原点とする座標平面において、第1象限に属する点P(2r, 3s)(r,sは有理数)をとるとき、線分OPの長さは無理数となることを示せ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第2問〜定積分で表された関数と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
2 nを自然数、aを正の定数とする。関数f(x)は等式
f(x)=x+1n0xf(t)dt
を満たし、関数g(x)はg(x)=aexn+aとする。2つの曲線y=f(x)とy=g(x)はある1点を共有し、その点における2つの接線が直交するとき、次の問いに答えよ。ただし、eは自然対数の底とする。
(1)h(x)=exnf(x)とおくとき、導関数h'(x)とh(x)を求めよ。
(2)aをnを用いて表せ。
(3)2つの曲線y=f(x), y=g(x)とy軸で囲まれた部分の面積をSnとするとき、
極限値limnS1+S2++Snn3 を求めよ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第1問〜整数解と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
1 袋の中に1から5までの番号をつけた5個の玉が入っている。この袋から玉を1個取り出し、番号を調べてから元に戻す試行を、4回続けて行う。n回目(1≦n≦4)に取り出された玉の番号をrnとするとき、
r1+r2+r3+r4≦8 となる確率は  ()  
4r1r2+2r3r4=1となる確率は  ()  
である。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

慈恵医大 座標のフリした整数問題

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
Oを原点とする座標平面において,第一象限に属する点P(2r,3s)(r,sは有理数)をとるとき,線分OPの長さは無理数となることを示せ.

慈恵医大過去問
この動画を見る 

慈恵医大 複素数の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
α=cos27π+isin27π
(1)α7,k=06αkの値を求めよ.

(2)β=α3+α5+α6とするとき,β+β¯,ββ¯の値を求めよ.

(3)β=a+bi,bの正負を判定しa,bの値を求めよ.

慈恵医大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題052〜東京慈恵会医科大学2019年度医学部第2問〜2曲線の相接と囲まれた部分の面積とその極限

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
2 a,bは定数でa>1とする。2つの曲線C1:y=3ex1ex+1,C2:y=exa2+bが共有点Pをもち、点Pにおいて共通の接線をもつとする。このとき、次の問いに答えよ。
(1)C1の凹凸および変曲点を調べ、C1の概形を描け。
(2)点Pの座標とbaで表せ。
(3)C1,C2y軸で囲まれた部分の面積S(a)aで表せ。また、極限値limaS(a)を求めよ。
ただし、必要ならばlimxlogxx=0であることを用いてよい。

2019東京慈恵会医科大学医学部過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第2問〜微分可能性と最大値と体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
実数aは正の定数とする。実数全体で定義された関数f(x)=|x+a|x2+1について、
次の問いに答えよ。
(1)f(x)x=aで微分可能であるかどうか調べよ。
(2)f(x)の最大値が2となるように、定数aの値を定めよ。
(3)定数aは(2)で定めた値とする。y=f(x)のグラフとx軸およびy軸で囲まれた部分
をx軸の周りに1回転させてできる立体の体積Vを求めよ。

2022東京慈恵会医科大学医学部過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第1問〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
袋Aには白玉2個、赤玉1個、袋Bには白玉1個、赤玉2個が入っている。
この状態から始めて、次の操作を繰り返し行う。
操作
① 袋A、袋Bから玉を1個ずつ取り出す。
② (i)取り出した2個の玉の色が同じである場合は、取り出した玉を2個とも
袋Aに入れる。
(ii)取り出した2個の玉の色が異なる場合は、袋Aから取り出した玉は袋B
に入れ、袋Bから取り出した玉は袋Aに入れる。
このとき、
・操作を2回繰り返した後に袋Aに入っている赤玉の個数が1個である確率は  ()  
・操作を3回繰り返した後に袋Aに入っている赤玉の個数が0個である確率は  ()  
である。

2022東京慈恵会医科大学医学部過去問
この動画を見る 

慈恵医大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数Pは素数、a,b,c自然数
aは素数

a(abp2)=C2,b2Cを満たす

(1)
(a,b,c)の組の個数をPを用いて表せ

(2)
a,b,cの最大公約数1となるような(a,b,c)の組の個数をPで表せ

出典:2017年東京慈恵会医科大学附属病院 過去問
この動画を見る 

慈恵医大 複素数 3次方程式 有理数解の有無 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
θ=29π,α=cosθ+isinθ
β=α+α8

(1)
βは実数であることを示せ


(2)
βは整数係数の三次方程式の解である。
その方程式を求めよ。

(3)
(2)で求めた方程式は有理数の解をもたないことを示せ。

出典:2004年東京慈恵会医科大学 過去問
この動画を見る 
PAGE TOP preload imagepreload image