横浜国立大学 - 質問解決D.B.(データベース) - Page 3

横浜国立大学

【理数個別の過去問解説】2020年度横浜国立大学 数学 第3問(2)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
中身の見えない2つの箱A、Bがある。箱Aには白玉と赤玉がそれぞれ2個ずつ入っており、箱Bには白玉1個だけが入っている。このとき、nを正の整数として、次の操作(*)を考える。
(*)はじめに、箱Aの中身をよくかきまぜて、箱Aから玉を2個取り出し、色を確認しないで、箱Bに2個とも入れる。次に、「箱Bの中身をよくかきまぜて、箱Bから玉を1個取り出し、色を確認した後、箱Bに戻す」という作業をn回繰り返す。
操作(*)を一度行なったとき、箱Bから取り出した玉がn回ともすべて白玉である確率を$p_n$とし、箱Bから取り出した玉がn回ともすべて白玉であるという条件のもとで、はじめに箱Aから取り出した玉が2個とも白玉である条件付き確率を$q_n$とする。次の問いに答えよ。
(1)$p_2、q_2$を求めよ。
(2)$p_n、q_n$を求めよ。
(3)$q_n\gt \dfrac{1}{2}$をみたす最小のnの値を求めよ。
この動画を見る 

【理数個別の過去問解説】2020年度横浜国立大学 数学 第3問(1)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大学2020年度大問3(1)
中身の見えない2つの箱A、Bがある。箱Aには白玉と赤玉がそれぞれ2個ずつ入っており、箱Bには白玉1個だけが入っている。このとき、nを正の整数として、次の操作(*)を考える。
(*)はじめに、箱Aの中身をよくかきまぜて、箱Aから玉を2個取り出し、色を確認しないで、箱Bに2個とも入れる。次に、「箱Bの中身をよくかきまぜて、箱Bから玉を1個取り出し、色を確認した後、箱Bに戻す」という作業をn回繰り返す。
操作(*)を一度行なったとき、箱Bから取り出した玉がn回ともすべて白玉である確率を$p_n$とし、箱Bから取り出した玉がn回ともすべて白玉であるという条件のもとで、はじめに箱Aから取り出した玉が2個とも白玉である条件付き確率を$q_n$とする。次の問いに答えよ。
(1)$p_2、q_2$を求めよ。
(2)$p_n、q_n$を求めよ。
(3)$q_n\gt \dfrac{1}{2}$をみたす最小のnの値を求めよ。
この動画を見る 

【理数個別の過去問解説】2020年度横浜国立大学 数学 第2問(2)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大学2020年度大問2(2)
次の問いに答えよ。
(1)実数A,B,C,Dに対して、複素数zを
$z=\dfrac{A+\sqrt5 Bi}{C+\sqrt5 Di}$
で定める。ただし、$C+\sqrt5 Di\neq 0$とする。このとき、$x=x+yi$をみたす実数x,yをA,B,C,Dの式で表せ。
(2)次をみたす整数A,B,C,Dを求めよ。
$\dfrac{16+\sqrt5 i}{29}=\dfrac{A+\sqrt5 Bi}{C+\sqrt5 Di}$
$AD-BC=-1$
$D\gt 0$
この動画を見る 

【理数個別の過去問解説】2020年度横浜国立大学 数学 第2問(1)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大学2020年度大問2(1)
次の問いに答えよ。
(1)実数A,B,C,Dに対して、複素数zを
$z=\dfrac{A+\sqrt5 Bi}{C+\sqrt5 Di}$
で定める。ただし、$C+\sqrt5 Di\neq 0$とする。このとき、$x=x+yi$をみたす実数x,yをA,B,C,Dの式で表せ。
(2)次をみたす整数A,B,C,Dを求めよ。
$\dfrac{16+\sqrt5 i}{29}=\dfrac{A+\sqrt5 Bi}{C+\sqrt5 Di}$
$AD-BC=-1$
$D\gt 0$
この動画を見る 

【理数個別の過去問解説】2020年度横浜国立大学 数学 第1問(2)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大学2020年度大問1(2)
定積分
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{4}}\dfrac{\log(\sin x)}{\tan x}dx$を求めよ.
この動画を見る 

【理数個別の過去問解説】2020年度横浜国立大学 数学 第1問(1)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大学2020年度大問1(1)
関数$f(x)=(e^x-1)\cos x-\sin x\left(-\dfrac{\pi}{2}\leqq x\leqq\dfrac{\pi}{2}\right)$の増減、極値を調べ、そのグラフの概形を描け。ただし、グラフの凹凸、変曲点は調べなくてよい。
この動画を見る 

数学「大学入試良問集」【13−15 格子点の解法】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$k$を$0$以上の整数とするとき、$\displaystyle \frac{x}{3}+\displaystyle \frac{y}{2} \leqq k$をみたす$0$以上の整数$x,y$の組$(x,y)$の個数を$a_k$とする。
$a_k$を$k$の式で表せ。

(2)
$n$を$0$以上の整数とするとき
$\displaystyle \frac{x}{3}+\displaystyle \frac{y}{2}+z \leqq n$
をみたす$0$以上の整数$x,y,z$の組$(x,y,z)$の個数を$b_n$とする。
$b_n$を$n$の式で表せ。
この動画を見る 

横浜国大 三角方程式 4倍角

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \leqq \theta \lt 2\pi$
$1-2\cos 3\theta+\cos4\theta=0$
解の個数を求めよ

出典:2000年横浜国立大学 過去問
この動画を見る 

横浜国大 複雑な漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_0=1$一般項を求めよ$(n$自然数$)$
$a_n=\displaystyle \sum_{k=1}^n 3^ka_{n-k}$

出典:2000年横浜国立大学 過去問
この動画を見る 

横浜国立大 場合の数・数列の和 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
横浜国立大学過去問題
1~nの整数から異なる2つの整数をとり出し、その2つの整数の和をS、積をtとする。
(1)とり出し方全てを考えたときのSの総和
(2)とり出し方全てを考えたときのtの総和
この動画を見る 

横浜国大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
横浜国立大学過去問題
P素数、n自然数
$P^n$を分母とする既約分数で、0より大きく、1より小さいものの総和を$S_n$
$S_1,S_2,S_3$
$S_n$を求めよ。
この動画を見る 

筑波大 横国大 4次方程式 対数連立方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#筑波大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
筑波大学過去問題
$f(x)=x^4+2x^2-4x+8$
(1)$(x^2+t)^2-f(x)=(px+q)^2$が恒等式になるような整数t,p,qの値を1組求めよ。
(2)$f(x)=0$のすべての解を求めよ。

横浜国立大学過去問題
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
log_{2x}y+log_x2y=1 \\
log_2xy=1
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

横国大・滋賀大 積・商の微分 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
滋賀大学過去問題
①$\{ f(x)g(x) \} '= f'(x)g(x)+f(x)g'(x) $
②$\frac{d}{dx} \{ f(x) \}^n =n \{ f(x) \}^{n-1}・f'(x)$

横浜国立大学過去問題
$x^3+a(x^2+x-1)=0$が相異3実数解をもつaの範囲
この動画を見る 
PAGE TOP