空間における垂直と平行と多面体(オイラーの法則)
空間における垂直と平行と多面体(オイラーの法則)
バーゼル問題 出題されてから91年後にオイラーが解決

単元:
#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.$n\to \infty$とする.
$\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+・・・・+\dfrac{1}{n^2}=\dfrac{\boxed{?}}{6}$
この動画を見る
これを解け.$n\to \infty$とする.
$\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+・・・・+\dfrac{1}{n^2}=\dfrac{\boxed{?}}{6}$
嵐の方程式 5-1=0 をオイラーの公式を使って よさまつが証明するよ

単元:
#数A#数Ⅱ#図形の性質#式と証明#恒等式・等式・不等式の証明#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
オイラーの公式 説明動画です
この動画を見る
オイラーの公式 説明動画です
光文社新書「中学の知識でオイラーの公式がわかる」Vol.1序章

単元:
#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$e^{i\theta}\cos\theta+i\sin\theta$
$\theta=\pi$
$e^{i\pi}=-1$
この動画を見る
$e^{i\theta}\cos\theta+i\sin\theta$
$\theta=\pi$
$e^{i\pi}=-1$
【高校数学】立体の問題のポイント・重要公式集【コツさえつかめば怖くない!】

単元:
#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【高校数学】立体の問題のポイント・重要公式集
-----------------
1⃣
球の中に正四面体ABCDが内接している。
正四面体ABCDの一辺の長さをaとし、球の半径をRとするとき、Rをaを用いて示しなさい。
2⃣
正四面体ABCDに球が内接している。
このとき、球の半径rをaを用いて表しなさい。
この動画を見る
【高校数学】立体の問題のポイント・重要公式集
-----------------
1⃣
球の中に正四面体ABCDが内接している。
正四面体ABCDの一辺の長さをaとし、球の半径をRとするとき、Rをaを用いて示しなさい。
2⃣
正四面体ABCDに球が内接している。
このとき、球の半径rをaを用いて表しなさい。
東大留年女子もっちゃんとオイラーの公式を学ぶ!最終章

単元:
#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
オイラーの公式に関して解説していきます.
$e=\displaystyle \lim_{ n \to \infty }(1+\displaystyle \frac{1}{n})^n$
$e^{i \pi}=-1$
この動画を見る
オイラーの公式に関して解説していきます.
$e=\displaystyle \lim_{ n \to \infty }(1+\displaystyle \frac{1}{n})^n$
$e^{i \pi}=-1$
もっちゃんとオイラーの公式を学ぶ 数学の魔術師も出演

単元:
#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
オイラーの公式に関して解説していきます.
$e^{i \pi}=-1$
この動画を見る
オイラーの公式に関して解説していきます.
$e^{i \pi}=-1$
オイラーの多面体定理 説明(英語)

【補足動画】受験対策・図形7の補足

単元:
#数Ⅰ#数A#図形の性質#図形と計量#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
【補足動画】受験対策・図形7の補足します.
この動画を見る
【補足動画】受験対策・図形7の補足します.
【受験対策】数学-図形7

単元:
#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①右の図1のような正五角柱において,
辺$AB$とねじれの位置にある辺の数を求めよう.
②右の図2で,印のあるすべての角の大きさの合計を求めなさい.
③右の図3で,平行四辺形$ABCD$と平行四辺形$DEFG$は合同で,
3つの頂点$A,D,G$は1直線上にある.
$BF$と辺$AD$,辺$DE$との交点をそれぞれ$H,I$とする.
$\triangle ABH$の面積が$18cm^2$,$\triangle DHI$の面積が
$4cm^2$のとき,$\triangle EFI$の面積を求めなさい.
図は動画内参照
この動画を見る
①右の図1のような正五角柱において,
辺$AB$とねじれの位置にある辺の数を求めよう.
②右の図2で,印のあるすべての角の大きさの合計を求めなさい.
③右の図3で,平行四辺形$ABCD$と平行四辺形$DEFG$は合同で,
3つの頂点$A,D,G$は1直線上にある.
$BF$と辺$AD$,辺$DE$との交点をそれぞれ$H,I$とする.
$\triangle ABH$の面積が$18cm^2$,$\triangle DHI$の面積が
$4cm^2$のとき,$\triangle EFI$の面積を求めなさい.
図は動画内参照
【高校数学】 数A-64 直線と平面③

単元:
#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
正六面体の各面の対角線の交点を頂点とし,
隣り合う面どうしの頂点を結ぶことによって,
正六面体の中に正八面体ができる.
このとき、,次の場合について,正八面体の体積を求めよう.
①正六面体の1辺の長さが6
②正八面体の1辺の長さが6
図は動画内参照
この動画を見る
正六面体の各面の対角線の交点を頂点とし,
隣り合う面どうしの頂点を結ぶことによって,
正六面体の中に正八面体ができる.
このとき、,次の場合について,正八面体の体積を求めよう.
①正六面体の1辺の長さが6
②正八面体の1辺の長さが6
図は動画内参照
【高校数学】 数A-63 直線と平面②

単元:
#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
凸多面体の①の数をV,②の数をe,③の数を$f$とすると,
$v-e+f=2$が成り立つ.これを④定理という.
空間内の直線$l,m,n$や,平面$P,Q,R$について,
次の記述が正しいときは○,正しくないときは×で答えよう.
⑤$\ell \perp P,m\perp P$のとき,$\ell \perp m$である.
⑥$\ell /\!/ P,m/\!/ P$のとき,$\ell /\!/m$である.
⑦$P /\!/ \ell,Q /\!/ \ell$のとき,$P/\!/ Q$である.
⑧$P\perp Q,Q /\!/ R$のとき,$P\perp R$である.
⑨$\ell \perp m,m\perp n$のとき,$\ell /\!/ n$である.
この動画を見る
凸多面体の①の数をV,②の数をe,③の数を$f$とすると,
$v-e+f=2$が成り立つ.これを④定理という.
空間内の直線$l,m,n$や,平面$P,Q,R$について,
次の記述が正しいときは○,正しくないときは×で答えよう.
⑤$\ell \perp P,m\perp P$のとき,$\ell \perp m$である.
⑥$\ell /\!/ P,m/\!/ P$のとき,$\ell /\!/m$である.
⑦$P /\!/ \ell,Q /\!/ \ell$のとき,$P/\!/ Q$である.
⑧$P\perp Q,Q /\!/ R$のとき,$P\perp R$である.
⑨$\ell \perp m,m\perp n$のとき,$\ell /\!/ n$である.
【高校数学】 数Ⅰ-99 正四面体の切り口

単元:
#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎1辺の長さが6の正四面体OABCがある。
OAの中点をL、辺OBを2:1に分ける点をM、辺OC上で2ON=NCを満たす点をNとする。
①$LM$の長さは?
②$\cos \angle MLN$の値は?
③$△LMN$の面積は?
この動画を見る
◎1辺の長さが6の正四面体OABCがある。
OAの中点をL、辺OBを2:1に分ける点をM、辺OC上で2ON=NCを満たす点をNとする。
①$LM$の長さは?
②$\cos \angle MLN$の値は?
③$△LMN$の面積は?
