確率分布 - 質問解決D.B.(データベース) - Page 2

確率分布

共通テスト2021年詳しい解説〜共通テスト2021年2B第3問〜統計

アイキャッチ画像
単元: #数学(中学生)#大学入試過去問(数学)#確率分布と統計的な推測#確率分布#統計的な推測#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
3
Q高校の校長先生は、ある日、新聞で高校生の読書に関する記事を読んだ。そこで、
Q高校の生徒全員を対象に、直前の1週間の読書時間に関して、100人の
生徒を無作為に抽出して調査を行った。その結果、100人の生徒のうち、この
1週間に全く読書をしなかった生徒が36人であり、100人の生徒のこの1週間の
読書時間(分)の平均値は204であった。Q高校の生徒全員のこの1週間の読書時間
の母平均をm, 母標準偏差を150とする。

(1)全く読書をしなかった生徒の母比率を0.5とする。このとき、100人の無作為標本の
うちで全く読書をしなかった生徒の数を表す確率変数をXとすると、X    
に従う。また、Xの平均(期待値)は    、標準偏差は    である。

    については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
⓪正規分布N(0,1)
①二項分布B(0,1)
②正規分布N(100,0.5)
③二項分布B(100,0.5)
④正規分布N(100,36)
⑤二項分布B(100,36)


(2)標本の大きさ100は十分に大きいので、100人のうち全く読書をしなかった生徒
の数は近似的に正規分布に従う。
全く読書をしなかった生徒の母比率を0.5とするとき、全く読書をしなかった生徒
が36人以下となる確率をp5とおく。p5の近似値を求めると、p5=    である。
また、全く読書をしなかった生徒の母比率を0.4とするとき、全く読書をしなかった
生徒が36人以下となる確率をp4とおくと、    である。

    については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
0.001
0.003
0.026
0.050
0.133
0.497

    の解答群
p4<p5
p4=p5
p4>p5


(3)1週間の読書時間の母平均mに対する信頼度95%の信頼区間を
C1mC2とする。標本の大きさ100は十分大きいことと、1週間
の読書時間の標本平均が204、母標準偏差が150であることを用いると、
C1+C2=    C2C1=    .    であることがわかる。
また、母平均mC1,C2については    

    の解答群
C1mC2が必ず成り立つ
mC2は必ず成り立つが、C1mが成り立つとは限らない
C1mは必ず成り立つが、mC2が成り立つとは限らない
C1mmC2も成り立つとは限らない


(4)Q高校の図書委員長も、校長先生と同じ新聞記事を読んだため、校長先生が
調査をしていることを知らずに、図書委員会として校長先生と同様の調査を
独自に行った。ただし、調査期間は校長先生による調査と同じ直前の1週間であり、
対象をQ高校の生徒全員として100人の生徒を無作為に抽出した。その調査における
全く読書をしなかった生徒の数をnとする。
校長先生の調査結果によると全く読書をしなかった生徒は36人であり、
    

    の解答群
nは必ず36に等しい
nは必ず36未満である
nは必ず36より大きい
nと36との大小はわからない


(5)(4)の図書委員会が行った調査結果による母平均mに対する信頼度95%の
信頼区間をD1mD2、校長先生が行った調査結果による母平均mに対す
る信頼度95%の信頼区間を(3)のC1mC2とする。ただし、母集団は同一
であり、1週間の読書時間の母標準偏差は150とする。
このとき、次の⓪~⑤のうち、正しいものは        である。

    ,     の解答群(解答の順序は問わない。)
C1=D1C2=D2が必ず成り立つ。
C1<D2またはD1<C2のどちらか一方のみが成り立つ。
D2<C1またはC2<D1となる場合もある。
C2C1>D2D1が必ず成り立つ。
C2C1=D2D1が必ず成り立つ。
C2C1<D2D1が必ず成り立つ。

2021共通テスト過去問
この動画を見る 

2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第5問〜確率分布と統計的な推測

アイキャッチ画像
単元: #大学入試過去問(数学)#確率分布と統計的な推測#確率分布#統計的な推測#センター試験・共通テスト関連#センター試験#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
5
ある市の市立図書館の利用状況について調査を行った。

(1)ある高校の生徒720人全員を対象に、ある1週間に市立図書館で借りた本の
冊数について調査を行った。
その結果、1冊も借りなかった生徒が612人、1冊借りた生徒が54人、
2冊借りた生徒が36人であり、3冊借りた生徒が18人であった。
4冊以上借りた生徒はいなかった。

この高校の生徒から1人を無作為に選んだ時、その生徒が借りた本の冊数
を表す確率変数をXとする。

このとき、Xの平均(期待値)はE(X)=        であり、X2の平均は
E(X2)=        である。よって、Xの標準偏差は
σ(X)=         である。

(2)市内の高校生全員を母集団とし、ある1週間に市立図書館を利用した生徒の
割合(母比率)をpとする。この母集団から600人を無作為に選んだ時、その
1週間に市立図書館を利用した生徒の数を確率変数Yで表す。

p=0.4のとき、Yの平均はE(Y)=    、標準偏差はσ(Y)=    
になる。ここで、Z=Y         とおくと、標本数600は
十分に大きいので、Zは近似的に標準正規分布に従う。このことを利用して、
Yが215以下となる確率を求めると、その確率は0.    になる。

また、p=0.2のとき、Yの平均は    1    倍、
標準偏差は        3倍である。

(3)市立図書館に利用者登録のある高校生全員を母集団とする。1回あたりの
利用時間(分)を表す確率変数をWとし、Wは母平均m,母標準偏差30の分布
に従うとする。この母集団から大きさnの標本W1,W2,,Wnを無作為に
抽出した。
利用時間が60分をどの程度超えるかについて調査するために
U1=W160, U2=W260, , Un=Wn60
とおくと、確率変数U1,U2,,Unの平均と標準偏差はそれぞれ
E(U1)=E(U2)==E(Un)=m    
σ(U1)=σ(U2)==σ(Un)=    
である。

ここで、t=m60として、tに対する信頼度95%の信頼区間を求めよう。
この母集団から無作為抽出された100人の生徒に対してU1,U2,,Um
値を調べたところ、その標本平均の値が50分であった。標本数は十分大きい
ことを利用して、この信頼区間を求めると
    .    t    .    
になる。

2020センター試験過去問
この動画を見る 
PAGE TOP preload imagepreload image