方程式
方程式
【中学数学】方程式文章題の解き方~どこよりも丁寧に~ 3-3【中1数学】

単元:
#数学(中学生)#中1数学#方程式
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 1個80円のみかんと1個100円のりんごをあわせて13個買うと、代金の合計は1160円になった。みかんは何個か。
(2) あめを何人かの子どもに配る。1人2個ずつ配ると10個余り、4個ずつ配ると4個足りない。子どもの人数を求めよ。
この動画を見る
(1) 1個80円のみかんと1個100円のりんごをあわせて13個買うと、代金の合計は1160円になった。みかんは何個か。
(2) あめを何人かの子どもに配る。1人2個ずつ配ると10個余り、4個ずつ配ると4個足りない。子どもの人数を求めよ。
【中学数学】数学用語チェック絵本 vol 3 方程式

【中学数学】方程式の基礎をどこよりも丁寧に 3-1【中1数学】

単元:
#数学(中学生)#中1数学#方程式
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)次の方程式のうち3が解であるものをすべて選べ
①$3x+2=11$ ②$\frac{1}{3}x+4=7$ ③$-2x+1=10$ ④$\frac{1}{6}x+\frac{1}{2}=1$
(2)次の方程式を解け
①$x-5=-7$ ②$2x=4$ ③$3x+4=-8$
この動画を見る
(1)次の方程式のうち3が解であるものをすべて選べ
①$3x+2=11$ ②$\frac{1}{3}x+4=7$ ③$-2x+1=10$ ④$\frac{1}{6}x+\frac{1}{2}=1$
(2)次の方程式を解け
①$x-5=-7$ ②$2x=4$ ③$3x+4=-8$
【中学数学】方程式の基礎をどこよりも丁寧に 3-1【中1数学】

小数を含む一次方程式 大阪教育大附属池田

単元:
#数学(中学生)#中1数学#方程式#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
1次方程式を解け
$0.2(0.3x-0.7)=0.1$
大阪教育大学附属高等学校池田校舎
この動画を見る
1次方程式を解け
$0.2(0.3x-0.7)=0.1$
大阪教育大学附属高等学校池田校舎
ただの一次方程式

単元:
#数学(中学生)#中1数学#方程式
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \dfrac{x-3}{2021}+ \dfrac{x}{2022}+ \dfrac{x+3}{2023}=9$
これを解け.
この動画を見る
$ \dfrac{x-3}{2021}+ \dfrac{x}{2022}+ \dfrac{x+3}{2023}=9$
これを解け.
【中学数学】方程式のまとめの宿題Live【中1夏期講習④】

単元:
#数学(中学生)#中1数学#方程式
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
問1 次の方程式を解け
(1)$2x+15=7$ (2)$5-8x=4x-1$ (3)$\frac{1}{2}(4x+6)=-\frac{2}{3}(6x-12)$
(4)$0.24x-0.12=1.04x+1.68$ (5)$2(3x+2)=3\{3x+4(x+1)\}+1$
問2 方程式をたてて求めよ
とんとんが家をでて毎分80 mで歩いていった。その8分後に母が毎分120 mでとんとんを追いかけた。母がとんとんに追いつくのはとんとんが家を出てから何分後か。
この動画を見る
問1 次の方程式を解け
(1)$2x+15=7$ (2)$5-8x=4x-1$ (3)$\frac{1}{2}(4x+6)=-\frac{2}{3}(6x-12)$
(4)$0.24x-0.12=1.04x+1.68$ (5)$2(3x+2)=3\{3x+4(x+1)\}+1$
問2 方程式をたてて求めよ
とんとんが家をでて毎分80 mで歩いていった。その8分後に母が毎分120 mでとんとんを追いかけた。母がとんとんに追いつくのはとんとんが家を出てから何分後か。
【中学数学】方程式を完璧にしよう【中1夏期講習④】

単元:
#数学(中学生)#中1数学#方程式
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の方程式を解け。
(1) $5x+24 = -3x$ (2) $5(2x+3) = x+6$ (3) $8x = 3x+9$
(4) $\frac{x}{2}+1 = \frac{2}{3}x+\frac{5}{6}$ (5) $0.3x+0.5 = -1.2x+3$ (6) $\frac{x+7}{4}-\frac{5}{6}x = 1- \frac{3x-7}{2}$
次の文章題を解け。
(1) 連続する$3$つの整数があり、その和は$36$である。この$3$つの整数を求めよ。
(2) 全校生徒$340$人の学校でバス通学をしているのは全男子生徒の$5%$、全女子生徒の$15%$である。バス通学の生徒の人数は男女合わせて$33$人である。この学校の生徒の全男子生徒の人数を求めよ。
この動画を見る
次の方程式を解け。
(1) $5x+24 = -3x$ (2) $5(2x+3) = x+6$ (3) $8x = 3x+9$
(4) $\frac{x}{2}+1 = \frac{2}{3}x+\frac{5}{6}$ (5) $0.3x+0.5 = -1.2x+3$ (6) $\frac{x+7}{4}-\frac{5}{6}x = 1- \frac{3x-7}{2}$
次の文章題を解け。
(1) 連続する$3$つの整数があり、その和は$36$である。この$3$つの整数を求めよ。
(2) 全校生徒$340$人の学校でバス通学をしているのは全男子生徒の$5%$、全女子生徒の$15%$である。バス通学の生徒の人数は男女合わせて$33$人である。この学校の生徒の全男子生徒の人数を求めよ。
ラッキー・ルウが伸びている件理系が考察した結果...

単元:
#数学(中学生)#中1数学#方程式
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
ワンピースのラッキー・ルウの身長が伸びてるみたいなんですけど
実際どうなんですか?
この動画を見る
下記質問の解説動画です
ワンピースのラッキー・ルウの身長が伸びてるみたいなんですけど
実際どうなんですか?
【式の形から見えるものもある!】一次方程式:愛知県公立高等学校~全国入試問題解法

単元:
#数学(中学生)#中1数学#方程式#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
一次方程式$5x-7=9(x-3)$を解け.
東京都高校過去問
この動画を見る
一次方程式$5x-7=9(x-3)$を解け.
東京都高校過去問
【数検3級】数学検定3級対策問題2~5

単元:
#数学(中学生)#中1数学#中2数学#中3数学#方程式#連立方程式#式の計算(展開、因数分解)#2次方程式#数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定3級
指導講師:
理数個別チャンネル
問題文全文(内容文):
数学検定3級対策問題2~5の解説動画です。
この動画を見る
数学検定3級対策問題2~5の解説動画です。
連立方程式の代入法について

ただの指数方程式なんだけど

単元:
#方程式#数Ⅱ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ xy \neq o.x,y$は有理数である.$
72^x48^y=6^{xy}$
これを解け.
数学jrオリンピック過去問
この動画を見る
$ xy \neq o.x,y$は有理数である.$
72^x48^y=6^{xy}$
これを解け.
数学jrオリンピック過去問
忘れ物の問題の裏技

単元:
#数学(中学生)#中1数学#方程式
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
弟が5km離れた学校に向かって家を出た。
弟の忘れ物に気づいた兄は、その8分後に家を出て、弟を追いかけた。
弟は50m/分、兄は70m/分だったとき、兄は家を出て何分後に弟に追いつくか求めよ
この動画を見る
弟が5km離れた学校に向かって家を出た。
弟の忘れ物に気づいた兄は、その8分後に家を出て、弟を追いかけた。
弟は50m/分、兄は70m/分だったとき、兄は家を出て何分後に弟に追いつくか求めよ
手を動かすだけの問題

単元:
#方程式#数と式
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \dfrac{1}{x}-\dfrac{1}{2y}=\dfrac{1}{2x+y}$のとき,
$\dfrac{y^2}{x^2}+\dfrac{x^2}{y^2}$の値を求めよ.
シンガポール数学オリンピック過去問
この動画を見る
$ \dfrac{1}{x}-\dfrac{1}{2y}=\dfrac{1}{2x+y}$のとき,
$\dfrac{y^2}{x^2}+\dfrac{x^2}{y^2}$の値を求めよ.
シンガポール数学オリンピック過去問
動体視力とYouTubeのAIを鍛える動画~全国入試問題解法 #Shorts

単元:
#数学(中学生)#中1数学#方程式#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の問いに答えなさい.
$x-7=\dfrac{4x-9}{3}$
方程式を解きなさい.
千葉県高校過去問
この動画を見る
次の問いに答えなさい.
$x-7=\dfrac{4x-9}{3}$
方程式を解きなさい.
千葉県高校過去問
食塩水苦手な人見て!

食塩水の濃度の必勝法

【中学数学】食塩水の濃度~この動画1つで完璧に~【中1数学】

単元:
#数学(中学生)#中1数学#方程式
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 食塩10gが水40gに溶けている食塩水の濃度を求めよ
(2) 5%の食塩水100gに吹く前れる食塩の量を求めよ
(3) 12%の食塩水200gと7%の食塩水300gを混ぜたとき何%の食塩水になりますか
(4) 10%の食塩水300gとx%の食塩水450gを混ぜたとき、7%の食塩水になる。xを求めよ
(5) 6%の食塩水100gから水何gを蒸発させると8%の食塩水になるか
(6) 6%の食塩水100gに水何gを混ぜると5%の食塩水になるか
この動画を見る
(1) 食塩10gが水40gに溶けている食塩水の濃度を求めよ
(2) 5%の食塩水100gに吹く前れる食塩の量を求めよ
(3) 12%の食塩水200gと7%の食塩水300gを混ぜたとき何%の食塩水になりますか
(4) 10%の食塩水300gとx%の食塩水450gを混ぜたとき、7%の食塩水になる。xを求めよ
(5) 6%の食塩水100gから水何gを蒸発させると8%の食塩水になるか
(6) 6%の食塩水100gに水何gを混ぜると5%の食塩水になるか
食塩水の濃度のイメージある?

高校入試だけど中学生より高校生向けの問題 早大学院(改)

単元:
#数学(中学生)#中1数学#中3数学#方程式#2次方程式#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
xについての方程式(a,b,cは整数)
$ax^2+bx+c = 0$について
$b^2-4ac > 0$ならば必ず2つの解をもつ。
○か✖か?
早稲田大学 高等学院(改)
この動画を見る
xについての方程式(a,b,cは整数)
$ax^2+bx+c = 0$について
$b^2-4ac > 0$ならば必ず2つの解をもつ。
○か✖か?
早稲田大学 高等学院(改)
【高校受験対策/数学】死守-97

単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#相似な図形#円#文字と式#平面図形#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守97
①$5-(-7)$を計算しなさい。
➁$\sqrt{ 27 }+\sqrt{ 12 }$を計算しなさい。
③$(\sqrt{ 2 }-1)^2$を計算しなさい。
④連立方程式を解きなさい。
$2x-3y=-4$
$x+2y=5$
⑤二次方程式$3x^2+7x+1=0$を解きなさい。
⑥相似な2つの立体$F,G$がある。
$F$と$G$の相似比が$3:5$であり、$F$の体積が$81\pi$$cm^3$のとき、$G$の体積を求めなさい。
⑦右の図のように、4点$A,B,C,D$が線分$BC$を直径とする 同じ円周上にあるとき、
$\angle ADB$の大きさを求めなさい。
⑧右下の図のような線分$OA$がある。
$\angle AOB=30°,OA=OB$となる二等辺三角形$OAB$を作図しなさい。
また点$B$の位置を示す文字$B$も図の中に書き入れなさい。
ただし、作図には定規とコンパスを用い、作図に用いた線は消えずに残しておくこと。
この動画を見る
高校受験対策・死守97
①$5-(-7)$を計算しなさい。
➁$\sqrt{ 27 }+\sqrt{ 12 }$を計算しなさい。
③$(\sqrt{ 2 }-1)^2$を計算しなさい。
④連立方程式を解きなさい。
$2x-3y=-4$
$x+2y=5$
⑤二次方程式$3x^2+7x+1=0$を解きなさい。
⑥相似な2つの立体$F,G$がある。
$F$と$G$の相似比が$3:5$であり、$F$の体積が$81\pi$$cm^3$のとき、$G$の体積を求めなさい。
⑦右の図のように、4点$A,B,C,D$が線分$BC$を直径とする 同じ円周上にあるとき、
$\angle ADB$の大きさを求めなさい。
⑧右下の図のような線分$OA$がある。
$\angle AOB=30°,OA=OB$となる二等辺三角形$OAB$を作図しなさい。
また点$B$の位置を示す文字$B$も図の中に書き入れなさい。
ただし、作図には定規とコンパスを用い、作図に用いた線は消えずに残しておくこと。
【高校受験対策/数学】死守-96

単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#比例・反比例#確率#2次関数#相似な図形#円#文字と式#平面図形#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守96
①$7+2×(-6)$を計算せよ。
②$3(2a+b)-2(4a-5b)$を計算せよ。
③$\frac{14}{\sqrt2}-\sqrt32$を計算せよ。
④2次方程式$(x+6)(x-5)=9x-10$を解け。
⑤関数$y=\frac{1}{2}x^2$について、$x$の変域が$-4 \leqq x\leqq2$のとき、$y$の変域を求めよ。
⑥関数$y=\frac{ 6 }{ x }$のグラフをかけ。
⑦$△ABC$において、$\angle A=90°,AB=6cm,BC=10cm$のとき、辺$AC$の長さを求めよ。
⑧4枚の硬質A、B、C、Dを同時に投げるとき、少なくとも1枚は表が出る確率を求めよ。
ただし、表と裏が出ることは同様に確からしいとする。
⑨右図のように、円$0$の円周上に3点、$A,B,C$を$AB=AC$となるようにとり、$△ABC$をつくる。
線分$BO$を延長した直線と線分$AC$と交点を$D$とする。
$\angle BAC=48°$のとき$\angle ADB$の大きさを求めよ。
この動画を見る
高校受験対策・死守96
①$7+2×(-6)$を計算せよ。
②$3(2a+b)-2(4a-5b)$を計算せよ。
③$\frac{14}{\sqrt2}-\sqrt32$を計算せよ。
④2次方程式$(x+6)(x-5)=9x-10$を解け。
⑤関数$y=\frac{1}{2}x^2$について、$x$の変域が$-4 \leqq x\leqq2$のとき、$y$の変域を求めよ。
⑥関数$y=\frac{ 6 }{ x }$のグラフをかけ。
⑦$△ABC$において、$\angle A=90°,AB=6cm,BC=10cm$のとき、辺$AC$の長さを求めよ。
⑧4枚の硬質A、B、C、Dを同時に投げるとき、少なくとも1枚は表が出る確率を求めよ。
ただし、表と裏が出ることは同様に確からしいとする。
⑨右図のように、円$0$の円周上に3点、$A,B,C$を$AB=AC$となるようにとり、$△ABC$をつくる。
線分$BO$を延長した直線と線分$AC$と交点を$D$とする。
$\angle BAC=48°$のとき$\angle ADB$の大きさを求めよ。
【高校受験対策/数学】死守-93

単元:
#数学(中学生)#中1数学#正の数・負の数#方程式#式の計算(展開、因数分解)#平方根#2次方程式#確率#文字と式#標本調査
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守93
①$2-(-5)-4$を計算せよ。
➁$3÷\frac{1}{4}×(-2^2)$を計算せよ。
③等式$3(4x-y)=6$を$y$について解け。
④$\sqrt{12}-\frac{9}{\sqrt{3}}$を計算せよ。
⑤$xy-6x+y-6$を 因数分解せよ。
⑥二次方程式$x^2+5x+2=0$を解け。
⑦右の表は、ある学級の生徒10人について、通学距離を調べて度数分布表に整理したものである。
この表からこの10人の通学距離の平均値を求めると何$km$になるか。
⑧次のア~ウの数の絶対値が、小さい順に左から右に並ぶように記号ア~ウを用いて書け。
ア $-3$
イ $0$
ウ $2$
⑨数字を書いた5枚のカード1、1、2、3、4がある。
この5枚のカードをよくきって、その中からもとにもどさずに続けて2枚を取り出し、
はじめに取り出したカードに書いてある数を$a$、次に取り出したカードに書いてある数を$b$とする。
このとき、$a \geqq b$になる確率を求めよ。
この動画を見る
高校受験対策・死守93
①$2-(-5)-4$を計算せよ。
➁$3÷\frac{1}{4}×(-2^2)$を計算せよ。
③等式$3(4x-y)=6$を$y$について解け。
④$\sqrt{12}-\frac{9}{\sqrt{3}}$を計算せよ。
⑤$xy-6x+y-6$を 因数分解せよ。
⑥二次方程式$x^2+5x+2=0$を解け。
⑦右の表は、ある学級の生徒10人について、通学距離を調べて度数分布表に整理したものである。
この表からこの10人の通学距離の平均値を求めると何$km$になるか。
⑧次のア~ウの数の絶対値が、小さい順に左から右に並ぶように記号ア~ウを用いて書け。
ア $-3$
イ $0$
ウ $2$
⑨数字を書いた5枚のカード1、1、2、3、4がある。
この5枚のカードをよくきって、その中からもとにもどさずに続けて2枚を取り出し、
はじめに取り出したカードに書いてある数を$a$、次に取り出したカードに書いてある数を$b$とする。
このとき、$a \geqq b$になる確率を求めよ。
【高校受験対策/数学】死守63

単元:
#数学(中学生)#中1数学#中2数学#中3数学#方程式#連立方程式#平方根#2次方程式#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守63
①
下の図1は、ある都市のある日の天気と気温であり、表示の気温は最高気温と最低気温を表している。
また、[ ]の中の数はある日の最高気温と最低気温が、前日の最高気温と最低気温に比べて何℃高いかを表している。
このときこの都市の前日の最低気温を求めなさい。
※図は動画参照
➁
右上の図2の正方形の面積は50c㎡である。このとき、正方形の1辺の長さを求めなさい。
ただし、根号の中の数はできるだけ小さい自然数にすること。
③
1枚$a$ gの封筒に、1枚$b$ gの便せんを5枚入れて重さをはかったところ、60gより重かった。
この数量の関係を不等式で表しなさい。
④
ある店で、ポロシャツとトレーナーを1着ずつ定価で買うと、代金の合計は6300円である。
今日はポロシャツが定価の2割引き、トレーナーが定価より800円安くなっていたため、それぞれ1着ずう買うと、代金の合計は5000円になるという。
このとき、ポロシャツとトレーナーの定価をそれぞれ求めなさい。
ただし、消費税は考えないものとする。
⑤
下の図のように、正五角形ABCDEがあり、点Pは はじめに頂点Aの位置にある。
1から6までの目のある2個のさいころを同時に1回投げて、出た目の数の和だけ、点Pは左回りに頂点を順に1つずつ 移動する。
例えば、2個のさいころの出た目の数の和が3のときは、点Pは頂点Dの位置に移動する。
2個のさいころを同時に1回投げるとき、 点Pが頂点Eの位置に移動する確率を求めなさい。
ただし、それぞれのさいころにおいて、1から6までのどの目が出ることも同様に確からしいとする。
この動画を見る
高校受験対策・死守63
①
下の図1は、ある都市のある日の天気と気温であり、表示の気温は最高気温と最低気温を表している。
また、[ ]の中の数はある日の最高気温と最低気温が、前日の最高気温と最低気温に比べて何℃高いかを表している。
このときこの都市の前日の最低気温を求めなさい。
※図は動画参照
➁
右上の図2の正方形の面積は50c㎡である。このとき、正方形の1辺の長さを求めなさい。
ただし、根号の中の数はできるだけ小さい自然数にすること。
③
1枚$a$ gの封筒に、1枚$b$ gの便せんを5枚入れて重さをはかったところ、60gより重かった。
この数量の関係を不等式で表しなさい。
④
ある店で、ポロシャツとトレーナーを1着ずつ定価で買うと、代金の合計は6300円である。
今日はポロシャツが定価の2割引き、トレーナーが定価より800円安くなっていたため、それぞれ1着ずう買うと、代金の合計は5000円になるという。
このとき、ポロシャツとトレーナーの定価をそれぞれ求めなさい。
ただし、消費税は考えないものとする。
⑤
下の図のように、正五角形ABCDEがあり、点Pは はじめに頂点Aの位置にある。
1から6までの目のある2個のさいころを同時に1回投げて、出た目の数の和だけ、点Pは左回りに頂点を順に1つずつ 移動する。
例えば、2個のさいころの出た目の数の和が3のときは、点Pは頂点Dの位置に移動する。
2個のさいころを同時に1回投げるとき、 点Pが頂点Eの位置に移動する確率を求めなさい。
ただし、それぞれのさいころにおいて、1から6までのどの目が出ることも同様に確からしいとする。
【高校受験対策/数学】死守-90

単元:
#数学(中学生)#中1数学#正の数・負の数#方程式#平方根#2次方程式#確率#2次関数#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守90
①$6-5-(-2)$を計算しなさい。
②$a=4$のとき、$6a^2÷3a$の値を求めなさい。
③$\sqrt{2}×\sqrt{6}×\frac{9}{\sqrt{3}}$を計算しなさい。
④方程式$x^2+5x-6=0$を解きなさい。
⑤2点$A(1,7)$、$B(3,2)$の間の距離を求めなさい。
⑥$4 \lt \sqrt{a}\lt \frac{13}{3}$に当てはまる整数$a$の値をすべて求めなさい。
⑦右の図の①~④の放物線は、下のア~エの関数のグラフです。
①と④はそれぞれどの関数のグラフですか。
ア~エの中から選びその記号をそれぞれ書きなさい。
ア $y=x^2$
イ $y=\frac{1}{3}x^2$
ウ $y=2x^2$
エ $y=-\frac{1}{2}x^2$
⑧数字を書いた4枚のカード①、②、③、④が袋Aの中に、
数字を書いた3枚のカード①、②、③が袋Bの中に入っています。
それぞれの袋からカードを1枚ずつ取り出すとき、
その2枚のカードに書いてある数の和が6以上になる確率を求めなさい。
この動画を見る
高校受験対策・死守90
①$6-5-(-2)$を計算しなさい。
②$a=4$のとき、$6a^2÷3a$の値を求めなさい。
③$\sqrt{2}×\sqrt{6}×\frac{9}{\sqrt{3}}$を計算しなさい。
④方程式$x^2+5x-6=0$を解きなさい。
⑤2点$A(1,7)$、$B(3,2)$の間の距離を求めなさい。
⑥$4 \lt \sqrt{a}\lt \frac{13}{3}$に当てはまる整数$a$の値をすべて求めなさい。
⑦右の図の①~④の放物線は、下のア~エの関数のグラフです。
①と④はそれぞれどの関数のグラフですか。
ア~エの中から選びその記号をそれぞれ書きなさい。
ア $y=x^2$
イ $y=\frac{1}{3}x^2$
ウ $y=2x^2$
エ $y=-\frac{1}{2}x^2$
⑧数字を書いた4枚のカード①、②、③、④が袋Aの中に、
数字を書いた3枚のカード①、②、③が袋Bの中に入っています。
それぞれの袋からカードを1枚ずつ取り出すとき、
その2枚のカードに書いてある数の和が6以上になる確率を求めなさい。
【高校受験対策/数学】死守-87

単元:
#数学(中学生)#中1数学#正の数・負の数#方程式#式の計算(展開、因数分解)#平方根#2次関数#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
【高校受験対策/数学】死守-87
①$3+(-5)$を計算しなさい。
➁$5\sqrt{6}-\sqrt{24}+\frac{18}{\sqrt{6}}$を計算しなさい。
③$3(x+y)-2(-x+2y)$を計算しなさい。
④$-4ab^2÷(-8a^2b)×3a^2$を計算しなさい。
⑤$(3x-y)^2$を展開しなさい。
⑥$a=3$のとき、$a^2+4a$の値を求めなさい。
⑦一次方程式$\frac{5-3x}{2}-\frac{x-1}{6}=1$を解きなさい。
⑧関数$y=ax^2$のグラフが点$(6,12)$を通っている。
この関数について$x$の変域が$-4 \leqq x\leqq2$のとき、$y$の変域を求めなさい。
⑨右の図の円$O$で、点$A$が接点と なるように円$O$の接線を作図しなさい。
ただし作図に用いた線は消さずに残しておくこと。
この動画を見る
【高校受験対策/数学】死守-87
①$3+(-5)$を計算しなさい。
➁$5\sqrt{6}-\sqrt{24}+\frac{18}{\sqrt{6}}$を計算しなさい。
③$3(x+y)-2(-x+2y)$を計算しなさい。
④$-4ab^2÷(-8a^2b)×3a^2$を計算しなさい。
⑤$(3x-y)^2$を展開しなさい。
⑥$a=3$のとき、$a^2+4a$の値を求めなさい。
⑦一次方程式$\frac{5-3x}{2}-\frac{x-1}{6}=1$を解きなさい。
⑧関数$y=ax^2$のグラフが点$(6,12)$を通っている。
この関数について$x$の変域が$-4 \leqq x\leqq2$のとき、$y$の変域を求めなさい。
⑨右の図の円$O$で、点$A$が接点と なるように円$O$の接線を作図しなさい。
ただし作図に用いた線は消さずに残しておくこと。
【高校受験対策/数学】死守-86

単元:
#数学(中学生)#中1数学#正の数・負の数#方程式#平方根#比例・反比例#空間図形#2次関数#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守86 @1:57
①$3×(-8)$を計算しなさい。
➁$\frac{1}{2}-\frac{5}{6}$を計算しなさい。
③$-8x^3÷4x^2×(-x)$を計算しなさい。
④$\sqrt{50}+\sqrt{2}$を計算しなさい。
⑤六角形の内角の和を求めなさい。
⑥関数$y=ax^2$について、$x$の値が$2$から$6$まで増加するときの変化の割合が$-4$である。
このとき$a$の値を求めなさい。
⑦右の図は立方体の展開図である。
この立方体において、面$A$と平行になる面を、ア~オの中から1つ選び記号で答えなさい。
⑧$-3$と$-2\sqrt{2}$の大小を、不等号を使って表しなさい。
⑨ある中学校の生徒の人数は126人で、126人全員が徒歩通学か自転車通学のいずれか一方で通学しており、
徒歩通学をしている生徒と自転車通学をしている生徒の人数の比は$5:2$である。
このとき、自転車通学をしている生徒の人数を求めなさい。
この動画を見る
高校受験対策・死守86 @1:57
①$3×(-8)$を計算しなさい。
➁$\frac{1}{2}-\frac{5}{6}$を計算しなさい。
③$-8x^3÷4x^2×(-x)$を計算しなさい。
④$\sqrt{50}+\sqrt{2}$を計算しなさい。
⑤六角形の内角の和を求めなさい。
⑥関数$y=ax^2$について、$x$の値が$2$から$6$まで増加するときの変化の割合が$-4$である。
このとき$a$の値を求めなさい。
⑦右の図は立方体の展開図である。
この立方体において、面$A$と平行になる面を、ア~オの中から1つ選び記号で答えなさい。
⑧$-3$と$-2\sqrt{2}$の大小を、不等号を使って表しなさい。
⑨ある中学校の生徒の人数は126人で、126人全員が徒歩通学か自転車通学のいずれか一方で通学しており、
徒歩通学をしている生徒と自転車通学をしている生徒の人数の比は$5:2$である。
このとき、自転車通学をしている生徒の人数を求めなさい。
【高校受験対策/数学】死守-85

単元:
#数学(中学生)#中1数学#中3数学#正の数・負の数#方程式#平方根#2次方程式#空間図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守85 @4:15
①$2-(3-8)$を計算しなさい。
②$(\frac{1}{3}-\frac{3}{4})÷\frac{5}{6}$を計算しなさい。
③$(-4x)^2÷12xy×9xy^2$を計算しなさい。
④$\sqrt{18}-\frac{10}{\sqrt{ 2 }}$を計算しなさい。
⑤2次方程式$(x-4)(3x+2)=8x-5$を解きなさい。
⑥右の図のように、底面が直角三角形で、側面がすべて長方形の三角柱があり、$AB=6cm$、$BE=4cm$、$\angle ABC=30°$、$\angle ACB=90°$である。
この三角柱の体積を求めなさい。
⑦空間内にある平面$P$と、異なる2直線$l,m$の位置関係について、
つねに正しいものを、次のア~エから1つ選び記号で答えなさい。
ア 直線$l$と直線$m$が、それぞれ平面$P$と交わるならば、直線$l$と直線$m$は交わる。
イ 直線$l$と直線$m$が、それぞれ平面$P$と平行ならば、直線$l$と直線$m$は平行である。
ウ 平面$P$と交わる直線$l$が、平面$P$上にある直線$m$と垂直であるならば、平面$P$と直線$l$は垂直である。
エ 平面$P$と交わる直線$l$が、平面$P$上にある直線$m$と交わらないならば、直線$l$と直線$m$はねじれの位置にある。
この動画を見る
高校受験対策・死守85 @4:15
①$2-(3-8)$を計算しなさい。
②$(\frac{1}{3}-\frac{3}{4})÷\frac{5}{6}$を計算しなさい。
③$(-4x)^2÷12xy×9xy^2$を計算しなさい。
④$\sqrt{18}-\frac{10}{\sqrt{ 2 }}$を計算しなさい。
⑤2次方程式$(x-4)(3x+2)=8x-5$を解きなさい。
⑥右の図のように、底面が直角三角形で、側面がすべて長方形の三角柱があり、$AB=6cm$、$BE=4cm$、$\angle ABC=30°$、$\angle ACB=90°$である。
この三角柱の体積を求めなさい。
⑦空間内にある平面$P$と、異なる2直線$l,m$の位置関係について、
つねに正しいものを、次のア~エから1つ選び記号で答えなさい。
ア 直線$l$と直線$m$が、それぞれ平面$P$と交わるならば、直線$l$と直線$m$は交わる。
イ 直線$l$と直線$m$が、それぞれ平面$P$と平行ならば、直線$l$と直線$m$は平行である。
ウ 平面$P$と交わる直線$l$が、平面$P$上にある直線$m$と垂直であるならば、平面$P$と直線$l$は垂直である。
エ 平面$P$と交わる直線$l$が、平面$P$上にある直線$m$と交わらないならば、直線$l$と直線$m$はねじれの位置にある。
【高校受験対策/数学】死守-84

単元:
#数学(中学生)#中1数学#正の数・負の数#方程式#平方根#2次方程式#文字と式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守84
①$4-(-6)×2$を計算しなさい。
➁$\frac{x-2y}{ 2 }-\frac{3x-y}{6}$を計算しなさい。
③$(x-3y)(x+4y)-xy$を計算しなさい。
④方程式$\frac{3}{2}x+1=10$を解きなさい。
⑤$a=\sqrt{3}-1$のとき、$a^2+2a$の値を求めなさい。
⑦紅茶が$450ml$、牛乳が$180ml$ある。紅茶と牛乳を$5:3$の 割合で混ぜてミルクティーをつくる。
紅茶を全部使ってミルクティーをつくるには、牛乳はあと何$ml$必要か求めなさい。
⑥方程式$2x^2-5x+1=0$を解きなさい。
⑧$n$は自然数である。
$\sqrt{3n}$が整数となる$n$の値のうち、2番目に 小さいものを求めなさい。
⑨$n$は自然数である。
$10\lt \sqrt{n} \lt11$を満たし、$\sqrt{7n}$が整数となる$n$の値を求めなさい。
この動画を見る
高校受験対策・死守84
①$4-(-6)×2$を計算しなさい。
➁$\frac{x-2y}{ 2 }-\frac{3x-y}{6}$を計算しなさい。
③$(x-3y)(x+4y)-xy$を計算しなさい。
④方程式$\frac{3}{2}x+1=10$を解きなさい。
⑤$a=\sqrt{3}-1$のとき、$a^2+2a$の値を求めなさい。
⑦紅茶が$450ml$、牛乳が$180ml$ある。紅茶と牛乳を$5:3$の 割合で混ぜてミルクティーをつくる。
紅茶を全部使ってミルクティーをつくるには、牛乳はあと何$ml$必要か求めなさい。
⑥方程式$2x^2-5x+1=0$を解きなさい。
⑧$n$は自然数である。
$\sqrt{3n}$が整数となる$n$の値のうち、2番目に 小さいものを求めなさい。
⑨$n$は自然数である。
$10\lt \sqrt{n} \lt11$を満たし、$\sqrt{7n}$が整数となる$n$の値を求めなさい。
