方程式 - 質問解決D.B.(データベース) - Page 2

方程式

食塩水の濃度の必勝法

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
12%の食塩水200gと7%の食塩水300gを混ぜたとき何%の食塩水か?
この動画を見る 

【中学数学】食塩水の濃度~この動画1つで完璧に~【中1数学】

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

食塩水の濃度のイメージある?

アイキャッチ画像
単元: #数学(中学生)#方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
食塩水濃度の求め方 解説動画です
この動画を見る 

高校入試だけど中学生より高校生向けの問題 早大学院(改)

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#方程式#2次方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
xについての方程式(a,b,cは整数)
$ax^2+bx+c = 0$について
$b^2-4ac > 0$ならば必ず2つの解をもつ。
○か✖か?

早稲田大学 高等学院(改)
この動画を見る 

【高校受験対策/数学】死守-97

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#相似な図形#円#文字と式#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守97

①$5-(-7)$を計算しなさい。
➁$\sqrt{ 27 }+\sqrt{ 12 }$を計算しなさい。
③$(\sqrt{ 2 }-1)^2$を計算しなさい。

④連立方程式を解きなさい。
$2x-3y=-4$
$x+2y=5$

⑤二次方程式$3x^2+7x+1=0$を解きなさい。

⑥相似な2つの立体$F,G$がある。
$F$と$G$の相似比が$3:5$であり、$F$の体積が$81\pi$$cm^3$のとき、$G$の体積を求めなさい。

⑦右の図のように、4点$A,B,C,D$が線分$BC$を直径とする 同じ円周上にあるとき、
$\angle ADB$の大きさを求めなさい。

⑧右下の図のような線分$OA$がある。
$\angle AOB=30°,OA=OB$となる二等辺三角形$OAB$を作図しなさい。
また点$B$の位置を示す文字$B$も図の中に書き入れなさい。
ただし、作図には定規とコンパスを用い、作図に用いた線は消えずに残しておくこと。
この動画を見る 

【高校受験対策/数学】死守-96

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#比例・反比例#確率#2次関数#相似な図形#円#文字と式#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守96

①$7+2×(-6)$を計算せよ。
②$3(2a+b)-2(4a-5b)$を計算せよ。
③$\frac{14}{\sqrt2}-\sqrt32$を計算せよ。
④2次方程式$(x+6)(x-5)=9x-10$を解け。
⑤関数$y=\frac{1}{2}x^2$について、$x$の変域が$-4 \leqq x\leqq2$のとき、$y$の変域を求めよ。
⑥関数$y=\frac{ 6 }{ x }$のグラフをかけ。
⑦$△ABC$において、$\angle A=90°,AB=6cm,BC=10cm$のとき、辺$AC$の長さを求めよ。

⑧4枚の硬質A、B、C、Dを同時に投げるとき、少なくとも1枚は表が出る確率を求めよ。
ただし、表と裏が出ることは同様に確からしいとする。

⑨右図のように、円$0$の円周上に3点、$A,B,C$を$AB=AC$となるようにとり、$△ABC$をつくる。
線分$BO$を延長した直線と線分$AC$と交点を$D$とする。
$\angle BAC=48°$のとき$\angle ADB$の大きさを求めよ。
この動画を見る 

【高校受験対策/数学】死守-93

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#方程式#式の計算(展開、因数分解)#平方根#2次方程式#確率#文字と式#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守93

①$2-(-5)-4$を計算せよ。

➁$3÷\frac{1}{4}×(-2^2)$を計算せよ。

③等式$3(4x-y)=6$を$y$について解け。

④$\sqrt{12}-\frac{9}{\sqrt{3}}$を計算せよ。

⑤$xy-6x+y-6$を 因数分解せよ。

⑥二次方程式$x^2+5x+2=0$を解け。

⑦右の表は、ある学級の生徒10人について、通学距離を調べて度数分布表に整理したものである。
この表からこの10人の通学距離の平均値を求めると何$km$になるか。

⑧次のア~ウの数の絶対値が、小さい順に左から右に並ぶように記号ア~ウを用いて書け。
ア $-3$
イ $0$
ウ $2$

⑨数字を書いた5枚のカード1、1、2、3、4がある。
この5枚のカードをよくきって、その中からもとにもどさずに続けて2枚を取り出し、
はじめに取り出したカードに書いてある数を$a$、次に取り出したカードに書いてある数を$b$とする。
このとき、$a \geqq b$になる確率を求めよ。
この動画を見る 

【高校受験対策/数学】死守63

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#連立方程式#平方根#2次方程式#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守63


下の図1は、ある都市のある日の天気と気温であり、表示の気温は最高気温と最低気温を表している。
また、[ ]の中の数はある日の最高気温と最低気温が、前日の最高気温と最低気温に比べて何℃高いかを表している。
このときこの都市の前日の最低気温を求めなさい。
※図は動画参照


右上の図2の正方形の面積は50c㎡である。このとき、正方形の1辺の長さを求めなさい。
ただし、根号の中の数はできるだけ小さい自然数にすること。


1枚$a$ gの封筒に、1枚$b$ gの便せんを5枚入れて重さをはかったところ、60gより重かった。
この数量の関係を不等式で表しなさい。



ある店で、ポロシャツとトレーナーを1着ずつ定価で買うと、代金の合計は6300円である。
今日はポロシャツが定価の2割引き、トレーナーが定価より800円安くなっていたため、それぞれ1着ずう買うと、代金の合計は5000円になるという。
このとき、ポロシャツとトレーナーの定価をそれぞれ求めなさい。
ただし、消費税は考えないものとする。


下の図のように、正五角形ABCDEがあり、点Pは はじめに頂点Aの位置にある。
1から6までの目のある2個のさいころを同時に1回投げて、出た目の数の和だけ、点Pは左回りに頂点を順に1つずつ 移動する。
例えば、2個のさいころの出た目の数の和が3のときは、点Pは頂点Dの位置に移動する。
2個のさいころを同時に1回投げるとき、 点Pが頂点Eの位置に移動する確率を求めなさい。
ただし、それぞれのさいころにおいて、1から6までのどの目が出ることも同様に確からしいとする。
この動画を見る 

【高校受験対策/数学】死守-90

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#方程式#平方根#2次方程式#確率#2次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守90

①$6-5-(-2)$を計算しなさい。

②$a=4$のとき、$6a^2÷3a$の値を求めなさい。

③$\sqrt{2}×\sqrt{6}×\frac{9}{\sqrt{3}}$を計算しなさい。

④方程式$x^2+5x-6=0$を解きなさい。

⑤2点$A(1,7)$、$B(3,2)$の間の距離を求めなさい。

⑥$4 \lt \sqrt{a}\lt \frac{13}{3}$に当てはまる整数$a$の値をすべて求めなさい。

⑦右の図の①~④の放物線は、下のア~エの関数のグラフです。
①と④はそれぞれどの関数のグラフですか。
ア~エの中から選びその記号をそれぞれ書きなさい。

ア $y=x^2$
イ $y=\frac{1}{3}x^2$
ウ $y=2x^2$
エ $y=-\frac{1}{2}x^2$

⑧数字を書いた4枚のカード①、②、③、④が袋Aの中に、
数字を書いた3枚のカード①、②、③が袋Bの中に入っています。
それぞれの袋からカードを1枚ずつ取り出すとき、
その2枚のカードに書いてある数の和が6以上になる確率を求めなさい。
この動画を見る 

【高校受験対策/数学】死守-87

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#方程式#式の計算(展開、因数分解)#平方根#2次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
【高校受験対策/数学】死守-87

①$3+(-5)$を計算しなさい。

➁$5\sqrt{6}-\sqrt{24}+\frac{18}{\sqrt{6}}$を計算しなさい。

③$3(x+y)-2(-x+2y)$を計算しなさい。

④$-4ab^2÷(-8a^2b)×3a^2$を計算しなさい。

⑤$(3x-y)^2$を展開しなさい。

⑥$a=3$のとき、$a^2+4a$の値を求めなさい。

⑦一次方程式$\frac{5-3x}{2}-\frac{x-1}{6}=1$を解きなさい。

⑧関数$y=ax^2$のグラフが点$(6,12)$を通っている。
この関数について$x$の変域が$-4 \leqq x\leqq2$のとき、$y$の変域を求めなさい。

⑨右の図の円$O$で、点$A$が接点と なるように円$O$の接線を作図しなさい。
ただし作図に用いた線は消さずに残しておくこと。
この動画を見る 

【高校受験対策/数学】死守-86

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#方程式#平方根#比例・反比例#空間図形#2次関数#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守86 @1:57

①$3×(-8)$を計算しなさい。

➁$\frac{1}{2}-\frac{5}{6}$を計算しなさい。

③$-8x^3÷4x^2×(-x)$を計算しなさい。

④$\sqrt{50}+\sqrt{2}$を計算しなさい。

⑤六角形の内角の和を求めなさい。

⑥関数$y=ax^2$について、$x$の値が$2$から$6$まで増加するときの変化の割合が$-4$である。
このとき$a$の値を求めなさい。

⑦右の図は立方体の展開図である。
この立方体において、面$A$と平行になる面を、ア~オの中から1つ選び記号で答えなさい。

⑧$-3$と$-2\sqrt{2}$の大小を、不等号を使って表しなさい。

⑨ある中学校の生徒の人数は126人で、126人全員が徒歩通学か自転車通学のいずれか一方で通学しており、
徒歩通学をしている生徒と自転車通学をしている生徒の人数の比は$5:2$である。
このとき、自転車通学をしている生徒の人数を求めなさい。

この動画を見る 

【高校受験対策/数学】死守-85

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#正の数・負の数#方程式#平方根#2次方程式#空間図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守85 @4:15

①$2-(3-8)$を計算しなさい。

②$(\frac{1}{3}-\frac{3}{4})÷\frac{5}{6}$を計算しなさい。

③$(-4x)^2÷12xy×9xy^2$を計算しなさい。

④$\sqrt{18}-\frac{10}{\sqrt{ 2 }}$を計算しなさい。

⑤2次方程式$(x-4)(3x+2)=8x-5$を解きなさい。

⑥右の図のように、底面が直角三角形で、側面がすべて長方形の三角柱があり、$AB=6cm$、$BE=4cm$、$\angle ABC=30°$、$\angle ACB=90°$である。
この三角柱の体積を求めなさい。

⑦空間内にある平面$P$と、異なる2直線$l,m$の位置関係について、
つねに正しいものを、次のア~エから1つ選び記号で答えなさい。

ア 直線$l$と直線$m$が、それぞれ平面$P$と交わるならば、直線$l$と直線$m$は交わる。
イ 直線$l$と直線$m$が、それぞれ平面$P$と平行ならば、直線$l$と直線$m$は平行である。
ウ 平面$P$と交わる直線$l$が、平面$P$上にある直線$m$と垂直であるならば、平面$P$と直線$l$は垂直である。
エ 平面$P$と交わる直線$l$が、平面$P$上にある直線$m$と交わらないならば、直線$l$と直線$m$はねじれの位置にある。
この動画を見る 

【高校受験対策/数学】死守-84

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#方程式#平方根#2次方程式#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守84

①$4-(-6)×2$を計算しなさい。

➁$\frac{x-2y}{ 2 }-\frac{3x-y}{6}$を計算しなさい。

③$(x-3y)(x+4y)-xy$を計算しなさい。

④方程式$\frac{3}{2}x+1=10$を解きなさい。

⑤$a=\sqrt{3}-1$のとき、$a^2+2a$の値を求めなさい。

⑦紅茶が$450ml$、牛乳が$180ml$ある。紅茶と牛乳を$5:3$の 割合で混ぜてミルクティーをつくる。
紅茶を全部使ってミルクティーをつくるには、牛乳はあと何$ml$必要か求めなさい。

⑥方程式$2x^2-5x+1=0$を解きなさい。

⑧$n$は自然数である。
$\sqrt{3n}$が整数となる$n$の値のうち、2番目に 小さいものを求めなさい。

⑨$n$は自然数である。
$10\lt \sqrt{n} \lt11$を満たし、$\sqrt{7n}$が整数となる$n$の値を求めなさい。
この動画を見る 

【高校受験対策/数学】死守81(問題作りました)

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#1次関数#平行と合同#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守81

①$81÷(-3)-(-11)$を計算しなさい。

②次の式を因数分解しなさい。
$(x-2)^2-18(x-2)+81$

③次の連立方程式を解きなさい。
$3x+11y=13$
$2x-3y=19$

④$311x-8y=1$を$y$について解きなさい。

⑤絶対値が$81$である数をすべて書きなさい。

⑥右の図において2直線$l,m$は平行である。
このとき、$\angle x$の大きさを求めなさい。

⑦3点$(-3,-11)$、$(2,9)$、$(k,81)$が一直線上にあるとき、 $k$の値を求めなさい。

⑧定価$8100$円のパーカーが$a$割引で売っていた。
それを買おうとレジに持っていくと、キャンペーンだったようで、そこからさらに$500$円引きしてくれた。
このとき、パーカーを買ったときの代金を$a$を使った式で表しなさい。
ただし消費税については考えないものとする。
この動画を見る 

【高校受験対策/数学】死守-80

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#空間図形#1次関数#確率#2次関数#文字と式#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守80

①$-3+(-4)×5$を計算しなさい。

②$4xy÷8x×6y$を計算しなさい。

③$\frac{4x-y}{2}-(2x-3y)$を計算しなさい。

④連立方程式を解きなさい。
$5x-4y=9$
$2x-3y=5$

③下の図で、$\angle x$の大きさを求めなさい。

④地球の直径は約$12700km$です。
有効数字が$1,2,7$であるとして、この距離を整数部分が1けたの数と、10の何乗かの積の形で表すと右のようになります。
アとイにあてはまる数を書きなさい。

⑦半径が$2cm$の球の体積と表面積を求めなさい。ただし円周率は$\pi$とする。

⑧赤玉3個と白玉2個が入っている袋があります。
この袋から玉を1個取り出して色を確認して、それを袋に戻してから、もう一度玉を1個取り出して色を確認します。
このとき、2回とも同じ色の玉が出る確率を求めなさい。
ただし、袋の中は見えないものとし、どの玉が出ることも同様に確からしいものとする。

⑨関数$y=ax^2$について、$x$の変域が$-2 \leqq x \leqq 3$のとき、$y$の変域は$-3b \leqq y \leqq 0$となりました。
このとき$a$の値を求めなさい。
この動画を見る 

【高校受験対策/数学】死守-79

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#文字と式#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守79

①$-3-(-7)$を計算しなさい。

②$8a^3b^5÷4a^2b^3$を計算しなさい。

③$x^2-8x+16$を因数分解しなさい。

④$a=\frac{2b-c}{5}$を$c$について解きなさい。

⑤二次方程式$x^2+5x+2=0$を解きなさい。

⑥$a=2$、$b=-3$のとき、$a+b^2$の値を求めなさい。

⑦次の文の( )に当てはまる条件として最も適切なものを、ア~エから1つ選んで記号で答えなさい。

平行四辺形$ABCD$に、( )の条件が加わると、平行四辺形$ABCD$は長方形になる。

ア $AB=BC$
イ $AC\perp BD$
ウ $AC=BD$
エ $\angle ABD=\angle CBD$

⑧$A$地点から$B$地点まで、初めは毎分$60m$で$am$歩き、途中から毎分$100m$で$bm$走ったところ、$20$分以内で$B$地点に到着した。この数量の関係を不等式で表しなさい。

⑨次のア~エのうちから、内容が正しいものを1つ選んで記号で答えなさい。

ア $9$の平方根は$3$と$-3$である。
イ $\sqrt{16}$を根号を使わずに表すと$\pm 4$である。
ウ $\sqrt{5}+\sqrt{7}$と$\sqrt{5+7}$は同じ値である。
エ $(\sqrt{2}+\sqrt{6})^2$と$(\sqrt{2})^2+(\sqrt{6})^2$は同じ値である。
この動画を見る 

【高校受験対策/数学】死守-78

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守78

①下の図のように、長方形$ABCD$の中に 1辺の長さが$\sqrt{5}cm$と$\sqrt{10}cm$の正方形がある。
このとき、斜線部分の長方形の間の長さを求めなさい。

②葉一くんは、下の図の平行四辺形$ABCD$の面積を求めるために、辺$BC$を底辺とみて、高さを測ろうと考えた。
点を$P$下の図のようにとるとき、線分$PH$が高さとなるような点$H$を作図によって求めなさい。

③1000円で、1個$a$円のクリームパン5個と1個$b$円のジャムパン3個を買うことができる。
ただし消費税は考えないものとする。
この数量の関係を表した不等式としてもっとも適切なものを、次の ア~エの中から一つ選んで、その記号を書きなさい。

ア $1000-(5a+3b) \lt 0$
イ $5a+3b \lt 1000$
ウ $1000-(5a+3b) \geqq 0$
エ $(5a+3b) \geqq 1000$

④ 右の図で、点$A$は関数$y=\frac{2}{x }$と関数$y=ax^2$のグラフの交点である。
点$B$は点$A$を$y$軸を対称の軸として対称移動させたものであり、$x$座標は$-1$である。
このことから、$a$の値はアであり、関数$y=ax^2$について、 $x$の値が1から3まで増加するときの変化の割合はイであることがわ かる。
このとき上のア・イに当てはまる数をそれぞれ書きなさい。
この動画を見る 

【高校受験対策/数学】死守77

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守77

①$-3+(-2)$を計算しなさい。

➁$8-4÷(-2)^2$を計算しなさい。

③$5×(-5a)$を計算しなさい。

④$\frac{1}{2}x^2y÷\frac{1}{4}xy$を計算しなさい。

⑤$\sqrt{48}-\sqrt{3}$を計算しなさい。

⑥$(2a-b)^2$を展開しなさい。

⑦$x^2-x-42$を因数分解しなさい。

⑧半径が$6cm$で中心角が$45°$のおうぎ形の面積を求めなさい。
ただし、円周率は$\pi$とする。

⑨解が$-5,1$の2つの数となる、$x$についての2次方程式を1つ作りなさい。

⑩次のア~エのうち、数の集合と四則との関係について述べた文として正しいものをすべて選び、記号で答えなさい。

ア 自然数と自然数の加法の結果は、いつでも自然数となる。
イ 自然数と自然数の減法の結果は、いつでも整数となる。
ウ 自然数と自然数の乗法の結果は、いつでも自然数となる。
エ 自然数と自然数の除法の結果は、いつでも整数となる。
この動画を見る 

【TikTok】池の周りを回る問題の裏技

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
池の周りを回る問題の裏技紹介動画です
この動画を見る 

【中学数学】方程式を立てずに解く裏技~追いつく系と池を周る問題~【中1数学】

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
弟が家を出て、毎分40mで歩く、その5分後に兄が毎分60mで追いかける。
兄が弟に追いつくのは家から何mの地点か。


2⃣
花子さんが家を出て毎分40mで歩いていった。
その10分後に母が毎分120mで花子さんを追いかけた。
母が花子さんに追いつくのは花子さんが家を出てから何分後か。


3⃣
1周3000mの池がある。池の周りをA、Bが同じ地点から互いに反対方向にスタートし、
Aは分速80mで歩き、Bは分速170mで走ったとき、何分後に2人が出会うか。


4⃣
1周480mの池がある。池の周りをA、Bが同じ地点から同時に出発して、Aは毎分65m、
Bは毎分55mの速さで同じ方向に歩き出すと、AがBをはじめて追いこすのは出発して
から何分後か。
この動画を見る 

【中学数学】方程式の利用~追いつく系の問題を丁寧に~【中1数学】

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
弟が家を出て、毎分40mで歩く、その5分後に兄が毎分60mで追いかける。
兄が弟に追いつくのは家から何mの地点か。


2⃣
花子さんが家を出て毎分40mで歩いていった。
その10分後に母が毎分120mで花子さんを追いかけた。
母が花子さんに追いつくのは花子さんが家を出てから何分後か。


3⃣
1周3000mの池がある。池の周りをA、Bが同じ地点から互いに反対方向にスタートし、
Aは分速80mで歩き、Bは分速170mで走ったとき、何分後に2人が出会うか。


4⃣
1周480mの池がある。池の周りをA、Bが同じ地点から同時に出発して、Aは毎分65m、
Bは毎分55mの速さで同じ方向に歩き出すと、AがBをはじめて追いこすのは出発して
から何分後か。
この動画を見る 

【中学数学】方程式~この動画1つで誰でもできるようになる~ 3-2【中1数学】

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) $5x+1=2x-5$

(2) $7x-3(x-7)=5x+1$

(3) $\displaystyle \frac{4}{5}x+3=\displaystyle \frac{1}{2}x$

(4) $0.3x-2=0.9x$

(5) $\displaystyle \frac{4x+5}{3}=x$

(6) $\displaystyle \frac{x}{5}+1=0$

(7) $\displaystyle \frac{3x+1}{x}=5$

(8) $\displaystyle \frac{1}{3x+1}=\displaystyle \frac{5}{2}$
この動画を見る 

【高校受験対策/数学】死守67

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#平行と合同#確率#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守67

① 2次方程式を$x^3+3x-1=0$を解きなさい。

②$\sqrt{24}\div\sqrt{3}-\sqrt{2}$を計算しなさい。

③関数$y=\frac{3}{x}$について、$x$の変域が$1 \leqq x \leqq 6$のとき、$y$の変域を答えなさい。


$x$枚の空の封筒と$y$本の鉛筆がある。
封筒の中に鉛筆を4本ずつ入れると8本足りず、3本ずつ入れると12本余る。
このとき$x$と$y$の値を求めなさい。


右の図のような、$AD=2cm$、$BC=5cm$、$AD/\!/BC$である台形$ABCD$があり、対角線$AC$、$BD$の交点を$E$とする。
点$E$から辺$DC$上に辺$BC$と線分$EF$が平行となる点$F$をとるとき、線分$EF$の長さを答えなさい。


1から6までの目のついた大、小2つのさいころを同時に投げたとき、大きいさいころの出た目の数を$a$、小さいさいころの出た目の数を$b$とする。
このとき、出た目の数の積$a×b$の値が25以下となる確率を求めなさい。


右の図のように直線$l$と2つの点$A$、$B$がある。
直線$l$上にあって、2つの点$A$、$B$を通る円の中心$P$を、定規とコンパスを用いて作図しなさい。
ただし作図に使った線は消さずに残しておくこと。
この動画を見る 

【高校受験対策/数学】死守66

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守66

①$6x\times2xy\div3y$を計算しなさい。

②$\sqrt{18}-6\sqrt{2}$を計算しなさい。

③$x^2+4x-12$を因数分解しなさい。

④2次方程式$3x^2-5x+1=0$を解きなさい。

⑤方程式$5x+3=2x+6$を解きなさい。

⑥$\frac{1}{2}(3x-y)-\frac{4x-y}{3}$を計算しなさい。

⑦2次方程式$2(x-2)^2-3(x-2)+1=0$を解きなさい。

⑧$x=2+\sqrt{3}$、$y=2-\sqrt{3}$のとき、$(1+\frac{1}{x})(1+\frac{1}{y})$の値を求めなさい。

⑨右の図のような、底面の半径が3cm、高さが4cmの円錐があります。この円錐の表面積を求めなさい。ただし円周率は$\pi$とします。

➉右の図のように、円Oとこの円の外部の点Pがあります。
点Pを通る円の接線をコンパスと定規を使って1つ作図しなさい。
ただし、作するためにかいた線は消さないでおきなさい。
この動画を見る 

【高校受験対策/数学】死守64

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#空間図形#確率#文字と式#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守64

①$\sqrt{26}\div\sqrt{2}$を計算しなさい

➁$2\sqrt{7} \times 3\sqrt{2}$を計算しなさい。

③$5\sqrt{3}+\sqrt{96}-8\sqrt{6}-\sqrt{27}$を計算しなさい。

④$5 \lt \sqrt{a} \leqq 6$を満たす整数$a$の個数を求めなさい。

⑤3点$A(2,1)$、$B(6,-5)$、$C(k,10)$が一直線上にあるとき、$k$の値を求めなさい。

⑥右の表は、あるクラスの女子20人の握力の記録を度数分布表にまとめたものです。
この20人の記録の平均値を求めなさい。

⑦大、小2個のさいころを同時に投げるとき、大きいさいころの出た目の数を$a$、小さいさいころの出た目の数を$b$とします。
このとき$\frac{b}{a}$が整数となる確率を求めなさい。

⑧A地点からB地点に行くのに、A地点から途中にあるC地点までは時速$a$ kmで2時間歩き、C地点からB地点までは時速$b$ kmで3時間歩きました。
このとき平均の速さは時速何kmか、$a$、$b$を用いた式で表しなさい。

⑨右の図は、1辺の長さが9cmの立方体から、頂点Aに集まる 3辺 AB、AD、AEをそれぞれ3等分する点のうち、
頂点Aに近い方の3点、P、Q、Rを通る平面で頂点Aを切り取り、同様に頂点B、C、Dも切り取ったものです。
このとき立体の体積は何㎥か求めなさい。
この動画を見る 

【中学数学】規則性の演習~岐阜県公立高校入試2019~【高校受験】

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式#高校入試過去問(数学)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
規則性の演習 入試頻発問題を使用しての解説動画です
この動画を見る 

中1数学「方程式の文章題⑦(割合の問題)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中1~第31回方程式の文章題⑦~(割合の問題)

例1
何円か持って買い物に行きました。最初に所持金の3/7使い 次に残りの所持金の5/8を使ったら、90円残りました。
最初の所持金を求めなさい。(記述)

例2
ある中学校の昨年度の生徒数は360人でした。 今年度の男子は5%減り、女子は10%増えたので 全体で12人増えました。
今年度の男子を求めなさい。
この動画を見る 

【中学数学】規則性の問題~高校受験対策~【高校受験】

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
n段n列のマス目に以下の規則にしたがって黒い石を置いていく。

【規則】
1段目と段目、1列目とn列目にあるすべてのマスに黒い石を1つずつ置く。
図は3段3列のマス目に、4段4列のマス目にこの規則にしたがって黒い石を置いたものである。

【問題】
1⃣
7段7列のマス目にこの規則にしたがって黒い石を置いたとき、置かれた黒い石の個数を求めよ。

2⃣
n段n列のマス目に、この規則にしたがって黒い石を置き、黒い石が置かれていない残りの
すべてのマスに白い石を1つずつ置きます。
白い石の個数が、黒い石の個数より41個多くなるときnの値を求めよ。

-----------------

動画内図1のようなタイルA,Bを動画内図2のようにすき間なく規則的に並べ、1番目の図形、
2番目の図形、3番目の図形、・・・とする。

1⃣
6番目の図形についてタイルBの枚数を求めよ。

2⃣
n番目の図形について、タイルAとタイルBの枚数の合計をnを使って表せ。

3⃣
タイルAとタイルBの枚数の合計が1861枚になるのは何番目の図形か。

-----------------

動画内図のように黒、白、赤のタイルを規則的に並べます。

1⃣
4番目のそれぞれの枚数を求めよ。

2⃣
n番目の白の枚数をnを使って表せ。

3⃣
すべての枚数が99枚になるのは何番目か求めよ。
この動画を見る 

中1数学「方程式の文章題⑥(比の問題)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中1~第31回方程式の文章題⑥~ (比の問題)

例1
兄と弟はシールを25枚ずつ持っています。
兄が弟から何枚かもらったので、兄と弟の枚数の比は4:1になりました。 兄は弟から何枚もらいましたか。

例2
姉と妹の所持金の比は8:5でしたが、
姉は300円使い、妹は母から1000円もらったので、 姉と妹の所持金の比は9:8になりました。
妹の所持金は何円になりましたか。
この動画を見る 

中1数学「方程式の文章題⑤(年齢の問題)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中1~第31回方程式の文章題⑤~ (年齢の問題)

例題
現在、子供は12才、父は42才です。
父の 年齢が子供の年齢の3倍になるのは、 今から何年後ですか。(記述)
この動画を見る 
PAGE TOP