【高校数学】条件付きの等式の証明~恒等式~ 1-9【数学Ⅱ】 - 質問解決D.B.(データベース)

【高校数学】条件付きの等式の証明~恒等式~ 1-9【数学Ⅱ】

問題文全文(内容文):
次の等式が成り立つことを証明せよ
$(1)a+b+c=0$のとき$a^2-2bc=b^2+c^2$
$\displaystyle(2)\frac{a}{b}=\frac{c}{d}$のとき$\displaystyle\frac{a+c}{b+d}=\frac{a-c}{b-d}$
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の等式が成り立つことを証明せよ
$(1)a+b+c=0$のとき$a^2-2bc=b^2+c^2$
$\displaystyle(2)\frac{a}{b}=\frac{c}{d}$のとき$\displaystyle\frac{a+c}{b+d}=\frac{a-c}{b-d}$
投稿日:2023.05.11

<関連動画>

ε-N論法 #1 lim1/n=0

アイキャッチ画像
単元: #数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \dfrac{1}{n}=0$を
$ε-N$論法を利用して示せ.
この動画を見る 

福田の数学〜早稲田大学2023年理工学部第1問〜整式の割り算の商に関する論証

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ nを自然数として、整式$(3x+2)^n$を$x^2$+$x$+1で割った余りを$a_nx$+$b_n$とおく。
(1)$a_{n+1}$と$b_{n+1}$を、それぞれ$a_n$と$b_n$を用いて表せ。
(2)全てのnに対して、$a_n$と$b_n$は7で割り切れないことを示せ。
(3)$a_n$と$b_n$を$a_{n+1}$と$b_{n+1}$で表し、全てのnに対して、2つの整数$a_n$と$b_n$は互いに素であることを示せ。

2023早稲田大学理工学部過去問
この動画を見る 

福田のおもしろ数学369〜条件付きの不等式の証明JP

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$abc=1$, $a,b,c > 0$のとき
$a^{b+c}b^{c+a}c^{a+b} \leqq1$が成り立つことを証明せよ。
この動画を見る 

福田のおもしろ数学403〜条件付きの不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$x+y=2,x\gt 0,y\gt 0$のとき、

$x^3y^3(x^3+y^3)\leqq 2$

を証明して下さい。
この動画を見る 

福田のおもしろ数学546〜1分チャレンジ!数値計算の計算

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

次の計算をして下さい。

$\dfrac{1}{1+1^2+1^4}+\dfrac{2}{1+2^2+2^4}+\dfrac{3}{1+3^2+3^4}+\cdots + \dfrac{50}{1+50^2+50^4}$
    
この動画を見る 
PAGE TOP