福田の数学〜中央大学2021年理工学部第2問〜3項間の漸化式 - 質問解決D.B.(データベース)

福田の数学〜中央大学2021年理工学部第2問〜3項間の漸化式

問題文全文(内容文):
$\boxed{2}$コインを繰り返し,連続した3回が順に,表→裏→表,あるいは,裏→表→裏,というパターンが出たときにコイン投げを終了する.$n\geqq 3$に対し,コインをちょうど$n$回投げて終了する確率を$p_n$とする.
以下の手順により$p_n$を求める.コインを$n$回投げて,「まだ終了していないが$n+1$回目に表が出たら終了する」または「まだ終了してないが$n+1$回目に裏が出たら終了する.」という状態にある確率を$r_n$とする.またコインを$n$回投げて「まだ終了しておらず,$n+1$回目に表が出ても裏が出ても終了しない」という状態にある確率を$s_n$とする.
このとき,$r_3=\dfrac{1}{4},s_3=\boxed{ク},r_4=\dfrac{1}{4},s_4=\boxed{ケ}$である.
ここで,$r_{n+4}$と$r_{n},s_n$を用いて表すと,それぞれ$r_{n+1}=\boxed{コ}$,$s_{n+1}=\boxed{サ}$となる.
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}$コインを繰り返し,連続した3回が順に,表→裏→表,あるいは,裏→表→裏,というパターンが出たときにコイン投げを終了する.$n\geqq 3$に対し,コインをちょうど$n$回投げて終了する確率を$p_n$とする.
以下の手順により$p_n$を求める.コインを$n$回投げて,「まだ終了していないが$n+1$回目に表が出たら終了する」または「まだ終了してないが$n+1$回目に裏が出たら終了する.」という状態にある確率を$r_n$とする.またコインを$n$回投げて「まだ終了しておらず,$n+1$回目に表が出ても裏が出ても終了しない」という状態にある確率を$s_n$とする.
このとき,$r_3=\dfrac{1}{4},s_3=\boxed{ク},r_4=\dfrac{1}{4},s_4=\boxed{ケ}$である.
ここで,$r_{n+4}$と$r_{n},s_n$を用いて表すと,それぞれ$r_{n+1}=\boxed{コ}$,$s_{n+1}=\boxed{サ}$となる.
投稿日:2021.08.13

<関連動画>

【For you 動画-16】  数B-数学的帰納法

アイキャッチ画像
単元: #数学的帰納法#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
[i]①____のとき成り立つことを確かめる。
[ii]②____のとき成り立つと③____ して、それを使って④____ のときに成り立つことをいう。

[iii]『以上より、すべての自然数に ついて成り立つ』と書こう!

◎$n$を自然数とするとき、$3^{n} \gt 2n$を証明しよう!

[i]⑤____のとき、⑥____ より成り立つ。

[ii]⑦____のとき成り立つと⑧すると


⑩____のとき、⑪____ を考えると
$\boxed{ ⑫ }$

つまり $3^{k+1} \gt 2(k+1)$となり
$n=k+1$のとき成り立つ。

[ iii] 以上より、すべての自然数について成り立つ。
この動画を見る 

これの説明できますか?

アイキャッチ画像
単元: #数列#漸化式#数列の極限#数学(高校生)#数B#数Ⅲ
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1-1-+1-1-+1-1...
解説動画です
この動画を見る 

18東京都教員採用試験(数学:場合の数、数列)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(2)
平面上の10コの円は、任意の2コの円も異なる2点で交わり、3コの円は1点で交わらないとき交点の総数を求めよ。
この動画を見る 

福井大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$k,n$は自然数 $a_{1}=k$
$a_{n+1}=2a_{n}+1$

(1)
$a_{n+4}-a_{n}$は15の倍数であることを示せ

(2)
$a_{2010}$が15の倍数となる最小の$k$の値は?

出典:福井大学 過去問
この動画を見る 

【数B】数列: 次の条件を満たす等差数列anの一般項を求めよ。a1+a4=12,a1+a7=18

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす等差数列anの一般項を求めよ。
a1+a4=12,a1+a7=18
この動画を見る 
PAGE TOP