福田の数学〜東京理科大学2022年理工学部第1問(3)〜2つの円の位置関係 - 質問解決D.B.(データベース)

福田の数学〜東京理科大学2022年理工学部第1問(3)〜2つの円の位置関係

問題文全文(内容文):
(3)座標平面上の3点(2,3),(-5,10),(-2,1)を通る円をC_1とする。この
とき、C_1の中心は$(-\boxed{ナ}, \boxed{ニ})$、半径は$\boxed{ヌ}$である。
$C_1$と点(2,3)で外接し、x軸とも接している円を$C_2$とする。このとき、
$C_2$の中心は$(\frac{\boxed{ネ}}{\boxed{ノ}},\frac{\boxed{ハヒ}}{\boxed{フ}})、半径は\frac{\boxed{ヘホ}}{\boxed{マ}}$である。

2022東京理科大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3)座標平面上の3点(2,3),(-5,10),(-2,1)を通る円をC_1とする。この
とき、C_1の中心は$(-\boxed{ナ}, \boxed{ニ})$、半径は$\boxed{ヌ}$である。
$C_1$と点(2,3)で外接し、x軸とも接している円を$C_2$とする。このとき、
$C_2$の中心は$(\frac{\boxed{ネ}}{\boxed{ノ}},\frac{\boxed{ハヒ}}{\boxed{フ}})、半径は\frac{\boxed{ヘホ}}{\boxed{マ}}$である。

2022東京理科大学理工学部過去問
投稿日:2022.11.13

<関連動画>

福田の一夜漬け数学〜図形と方程式〜円の方程式(11)円群と共通弦、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2つの円$x^2+y^2=4$ $\cdots$①と$x^2+y^2+4x-2y+4=0$ $\cdots$②について、
(1)2つの円は、異なる2点で交わることを示せ。
(2)2つの円の交点を通る直線の方程式を求めよ。
(3)2つの円の交点と原点を通る円の方程式を求めよ。

${\Large\boxed{2}}$ 中心$(a,b),$半径2の円と円$x^2+y^2=9$ $\cdots$①との2つの共有点を通る直線
の方程式が$6x-2y-15=0$となるような点$(a,b)$を求めよ。
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第1問(2)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)角θに関する方程式
$\cos 4θ=\cos θ(0\leqq θ\leqq \pi)$
について考える。①を満たすθは小さい方から順に
$θ=0,\frac{\boxed{キ}}{\boxed{ク}}\pi,\frac{\boxed{ケ}}{\boxed{コ}}\pi,\frac{\boxed{サ}}{\boxed{シ}}\pi$
の4つである。一方、θが①を満たすとき、$t=\cos θ$とおくとtは
$\boxed{ス}t^4 - \boxed{セ}t^2+\boxed{ソ}=t$
を満たす。$t=1,\cos \frac{\boxed{ケ}}{\boxed{コ}}\pi$は②の解なので、2次方程式
$\boxed{タ}t^2+\boxed{チ}t-1=0$
は$\cos \frac{\boxed{キ}}{\boxed{ク}}\pi,\cos \frac{\boxed{サ}}{\boxed{シ}}\pi$を解にもつ。これより、
$\cos \frac{\boxed{キ}}{\boxed{ク}}\pi=\frac{\sqrt{\boxed{ツ}}-\boxed{テ}}{\boxed{ト}},\cos \frac{\boxed{サ}}{\boxed{シ}}\pi=-\frac{\sqrt{\boxed{ツ}}+\boxed{テ}}{\boxed{ト}}$であることが分かる。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(4)切り取られる弦の長さと中点(基本)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2+4x-2y-1=0$ $\cdots$①と直線$4x+3y-5=0$ $\cdots$②
の交点を$A,B$とする。線分$AB$の長さと、中点の座標を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題030〜東京大学2016年度文系第1問〜鋭角三角形となる条件

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上のベクトル#図形と方程式#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の3点$P(x,y), Q(-x,-y), R(1,0)$が鋭角三角形をなすための$(x,y)$
についての条件を求めよ。また、その条件を満たす点P(x,y)の範囲を図示せよ。

2016東京大学文系過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第1問〜2つの円に同時に外接する円の条件

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 座標平面上の原点を中心とする半径2の円をC_1、中心の座標が(7,0)、半径3\\
の円をC_2とする。さらにrを正の実数とするとき、C_1とC_2に同時に外接する円で、\\
その中心の座標が(a,b)、半径がrであるものをC_3とする。ただし、2つの円が\\
外接するとは、それらが1点を共有し、中心が互いの外部にあるときをいう。\\
\\
(1)rの最小値は\boxed{\ \ ア\ \ }であり、aの最大値は\boxed{\ \ イ\ \ }となる。\\
\\
(2)aとbは関係式b^2=\boxed{\ \ ウエ\ \ }(a+\boxed{\ \ オカ\ \ })(a-4)を満たす。\\
\\
(3)C_3が直線x=-3に接するとき、a=\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケ\ \ }}, |b|=\frac{\sqrt{\boxed{\ \ コサシ\ \ }}}{\boxed{\ \ ス\ \ }}である。\\
\\
(4)点(a,b)と原点を通る直線と、点(a,b)と点(7,0)を通る直線が直交するとき、\\
|b|=\frac{\boxed{\ \ セソ\ \ }}{\boxed{\ \ タ\ \ }}となる。
\end{eqnarray}

2021慶應義塾大学経済学部過去問
この動画を見る 
PAGE TOP