福田の数学〜東京理科大学2022年理工学部第1問(2)〜三角方程式 - 質問解決D.B.(データベース)

福田の数学〜東京理科大学2022年理工学部第1問(2)〜三角方程式

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(2)角θに関する方程式\hspace{280pt}\\
\cos 4θ=\cos θ\ \ \ \ \ \ \ (0\leqq θ\leqq \pi)\hspace{30pt}...①\hspace{180pt}\\
について考える。①を満たすθは小さい方から順に\hspace{160pt}\\
θ=0,\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\pi,\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\pi,\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}\pi\hspace{180pt}\\
の4つである。一方、θが①を満たすとき、t=\cos θとおくとtは\hspace{104pt}\\
\boxed{\ \ ス\ \ }t^4 - \boxed{\ \ セ\ \ }t^2+\boxed{\ \ ソ\ \ }=t\hspace{30pt}...②\hspace{104pt}\\
を満たす。t=1,\cos \frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\piは②の解なので、2次方程式\hspace{124pt}\\
\boxed{\ \ タ\ \ }t^2+\boxed{\ \ チ\ \ }t-1=0\hspace{174pt}\\
は\cos \frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\pi,\cos \frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}\piを解にもつ。これより、\hspace{134pt}\\
\cos \frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\pi=\frac{\sqrt{\boxed{\ \ ツ\ \ }}-\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }},\cos \frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}\pi=-\frac{\sqrt{\boxed{\ \ ツ\ \ }}+\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}であることが分かる。
\end{eqnarray}
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(2)角θに関する方程式\hspace{280pt}\\
\cos 4θ=\cos θ\ \ \ \ \ \ \ (0\leqq θ\leqq \pi)\hspace{30pt}...①\hspace{180pt}\\
について考える。①を満たすθは小さい方から順に\hspace{160pt}\\
θ=0,\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\pi,\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\pi,\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}\pi\hspace{180pt}\\
の4つである。一方、θが①を満たすとき、t=\cos θとおくとtは\hspace{104pt}\\
\boxed{\ \ ス\ \ }t^4 - \boxed{\ \ セ\ \ }t^2+\boxed{\ \ ソ\ \ }=t\hspace{30pt}...②\hspace{104pt}\\
を満たす。t=1,\cos \frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\piは②の解なので、2次方程式\hspace{124pt}\\
\boxed{\ \ タ\ \ }t^2+\boxed{\ \ チ\ \ }t-1=0\hspace{174pt}\\
は\cos \frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\pi,\cos \frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}\piを解にもつ。これより、\hspace{134pt}\\
\cos \frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\pi=\frac{\sqrt{\boxed{\ \ ツ\ \ }}-\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }},\cos \frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}\pi=-\frac{\sqrt{\boxed{\ \ ツ\ \ }}+\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}であることが分かる。
\end{eqnarray}
投稿日:2022.11.12

<関連動画>

福田の数学〜中央大学2021年経済学部第3問〜円と円の位置関係と共通接線

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 円C_1:x^2+y^2-r=0と円C_2:x^2-10x+y^2+21=0 について、\\
以下の問いに答えよ。ただし、rは正の定数とする。\\
\\
(1)円C_1と円C_2が接するとき、rの値を求めよ。\\
(2)r=1とする。円C_1の接線lが円C_2にも接しているとき、\\
lの方程式を求めよ。解答はy=ax+bの形で表せ。\\

\end{eqnarray}

2021中央大学経済学部過去問
この動画を見る 

福田のわかった数学〜高校2年生031〜円と放物線の位置関係(3)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 円と放物線の位置関係(3)\\
\left\{\begin{array}{1}
円\ x^2+(y-a)^2=r^2 (a \gt 0,r \gt 0) \ldots①\\
放物線\ y=\displaystyle\frac{1}{2}x^2 \ldots②\\
\end{array}\right.\\
が次の条件を満たすときaの範囲、rをaで表せ。\\
\\
(1)原点Oで接し、かつ他に共有点を持たない。\\
(2)異なる2点で接する。
\end{eqnarray}
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(1)基本、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の条件を満たす円の方程式を求めよ。
(1)2点$A(-3,-4),B(5,8)$を直径の両端とする円。
(2)$x$軸、$y$軸の両方に接し、点$A(-4,2)$を通る円。
(3)点$A(1,1)$を通り、$y$軸に接し、中心が直線$\ell:y=2x$
上にある円。
この動画を見る 

福田のわかった数学〜高校2年生028〜定点通過(直線群、円群)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 定点通過(直線群・円群)\\
放物線y=x^2+5x-4 と\\
y=-x^2+ax+2 の2つの交点を\\
通る直線をlとする。lが点(2,3)を\\
通るときaの値とlの方程式を求めよ。
\end{eqnarray}
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第3問〜内サイクロイドと極方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ (1)座標平面上の点P(x,y)を、点T(s,t)を中心として半時計周りに角\alphaだけ\\
回転させるときに、点Pが点P'(x',y')に移るとする。x'とy'をx,y,s,t,\alpha\\
の式で表すとx'=\boxed{\ \ ア\ \ }, y'=\boxed{\ \ イ\ \ }となる。\\
(2)aを正の実数とする。原点O(0,0)とする半径aの円Cに、半径\frac{a}{2}で原点O\\
を通る円Kを点A(a,0)において内接させる。この円Kを円Cに沿って\\
滑らないように転がす。ただし、KとCの接点がC上を半時計回りに動くようにする。\\
そして、接点の座標がはじめて(a\cos\beta,a\sin\beta)(0 \leqq \beta \leqq 2\pi)となるようにする。\\
円Kに対するこの操作は次の2段階の操作を続けて行うことと同等である。\\
(\textrm{i})点B(\frac{a}{2},0)を中心として、円Kを\boxed{\ \ ウ\ \ }\ に角\boxed{\ \ エ\ \ }\ だけ回転させる。\\
(\textrm{ii})原点Oを中心として、円Kを\boxed{\ \ オ\ \ }\ に角\boxed{\ \ カ\ \ }\ だけ回転させる。\\
\\
\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ },\boxed{\ \ カ\ \ }の選択肢\\
時計回り,反時計回り,\beta,2\beta,\frac{1}{2}\beta\\
\\
\\
(3)円Kが点Aにおいて円Cに内接しているとき、Kの内部に固定された点Q(b,0)\\
(ただし、0 \lt b \lt a)をとる。円Kを、Cとの接点がC上を一周するまで(2)に述べた\\
やり方でCに沿って転がすとき、点Qが動いてできる曲線をS_1とする。S_1上の\\
点の座標を(x,y)として、S_1の方程式をx,yを用いて書くと\boxed{\ \ キ\ \ }となる。\\
\\
(4)円Kが点Aにおいて円Cに内接しているとき、円Cに固定された点R(0,a)をとる。\\
今度は円Kを固定して、円Cの方をKに接した状態で滑らないようにKに沿って転がす。\\
2つの円の接点が円Kを\boxed{\ \ ク\ \ }回転したとき、点Rははじめてもとの位置\\
(0,a)に戻る。Rが描く曲線をS_2とする。原点Oを極とし、x軸の正の部分を\\
始線とする極座標(r,\theta)によるS_2の極方程式はr=\boxed{\ \ ケ\ \ }である。\\
ただしr,\thetaはそれぞれS_2上の点の原点からの距離、および偏角である。
\end{eqnarray}

2022慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP