福田の数学〜東京理科大学2022年理工学部第1問(2)〜三角方程式 - 質問解決D.B.(データベース)

福田の数学〜東京理科大学2022年理工学部第1問(2)〜三角方程式

問題文全文(内容文):
(2)角θに関する方程式
$\cos 4θ=\cos θ(0\leqq θ\leqq \pi)$
について考える。①を満たすθは小さい方から順に
$θ=0,\frac{\boxed{キ}}{\boxed{ク}}\pi,\frac{\boxed{ケ}}{\boxed{コ}}\pi,\frac{\boxed{サ}}{\boxed{シ}}\pi$
の4つである。一方、θが①を満たすとき、$t=\cos θ$とおくとtは
$\boxed{ス}t^4 - \boxed{セ}t^2+\boxed{ソ}=t$
を満たす。$t=1,\cos \frac{\boxed{ケ}}{\boxed{コ}}\pi$は②の解なので、2次方程式
$\boxed{タ}t^2+\boxed{チ}t-1=0$
は$\cos \frac{\boxed{キ}}{\boxed{ク}}\pi,\cos \frac{\boxed{サ}}{\boxed{シ}}\pi$を解にもつ。これより、
$\cos \frac{\boxed{キ}}{\boxed{ク}}\pi=\frac{\sqrt{\boxed{ツ}}-\boxed{テ}}{\boxed{ト}},\cos \frac{\boxed{サ}}{\boxed{シ}}\pi=-\frac{\sqrt{\boxed{ツ}}+\boxed{テ}}{\boxed{ト}}$であることが分かる。
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)角θに関する方程式
$\cos 4θ=\cos θ(0\leqq θ\leqq \pi)$
について考える。①を満たすθは小さい方から順に
$θ=0,\frac{\boxed{キ}}{\boxed{ク}}\pi,\frac{\boxed{ケ}}{\boxed{コ}}\pi,\frac{\boxed{サ}}{\boxed{シ}}\pi$
の4つである。一方、θが①を満たすとき、$t=\cos θ$とおくとtは
$\boxed{ス}t^4 - \boxed{セ}t^2+\boxed{ソ}=t$
を満たす。$t=1,\cos \frac{\boxed{ケ}}{\boxed{コ}}\pi$は②の解なので、2次方程式
$\boxed{タ}t^2+\boxed{チ}t-1=0$
は$\cos \frac{\boxed{キ}}{\boxed{ク}}\pi,\cos \frac{\boxed{サ}}{\boxed{シ}}\pi$を解にもつ。これより、
$\cos \frac{\boxed{キ}}{\boxed{ク}}\pi=\frac{\sqrt{\boxed{ツ}}-\boxed{テ}}{\boxed{ト}},\cos \frac{\boxed{サ}}{\boxed{シ}}\pi=-\frac{\sqrt{\boxed{ツ}}+\boxed{テ}}{\boxed{ト}}$であることが分かる。
投稿日:2022.11.12

<関連動画>

福田の一夜漬け数学〜図形と方程式〜円の方程式(6)切り取られる弦の長さと中点(応用2)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2=4$ $\cdots$①, 直線$y=m(x-4)$ $\cdots$②がある。次の問いに答えよ。
(1)①②が異なる2点で交わるように定数$m$の値の範囲を求めよ。
(2)(1)のとき、②が①によって切り取られる弦の中点の座標を$m$を用いて表せ。
(3)(1)で求めた範囲を$m$が動くとき、(2)の中点はどんな図形を描くか。
この動画を見る 

福田の数学〜慶應義塾大学2021年商学部第1問(2)〜共通接線と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)点Aを、放物線C_1:y=x^2上にある点で、第1象限(x \gt 0かつy \gt 0の範囲)\\
に属するものとする。そのうえで、次の条件を満たす放物線\\
C_2:y=-3(x-p)^2+q を考える。\\
1.点Aは、放物線C_2上の点である。\\
2.放物線C_2の点Aにおける接線をlとするとき、lは放物線C_1の点Aにおける\\
接線と同一である。\\
点Aの座標をA(a,a^2)とするとき、\\
p=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}a, q=\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}a^2\\
と表せる。また、直線l、放物線C_2、および直線x=pで囲まれた部分の\\
面積は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カキ\ \ }}a^3 である。
\end{eqnarray}

2021慶應義塾大学商学部過去問
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜直線の方程式(5)直線群と軌跡、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2直線$x+5y-7=0$ $\cdots$①, $2x-y-4=0$ $\cdots$②の交点を通り、
直線$x+4y-6=0$ に垂直な直線の方程式を求めよ。

${\Large\boxed{2}}$ $m$が実数全体を動くとき、次の2直線の交点$P$はどんな図形を描くか。
$mx-y=0$ $\cdots$①  $x+my-m-2=0$ $\cdots$②
この動画を見る 

福田のわかった数学〜高校2年生053〜領域(8)領域と最大最小(4)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 領域(8) 領域と最大最小(4)\\
2x+3y \geqq 9, 4x+y \leqq18, y \leqq 2のとき、\\
x^2+y^2\\
の最大値、最小値を求めよ。
\end{eqnarray}
この動画を見る 

【数Ⅱ】円外の点から引いた接線【頻出問題 4S数学問題集で解く】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ 点(3,1)を通り,円x^2+y^2=5に接する直線の方程式を求めよ.$
この動画を見る 
PAGE TOP