福田の数学〜慶應義塾大学2022年環境情報学部第3問〜4次関数のグラフの接線と囲まれた面積 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年環境情報学部第3問〜4次関数のグラフの接線と囲まれた面積

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ xy平面上の曲線Cをy=x^2(x-1)(x+2)とする。
\\(1)Cに2点で下から接する直線Lの方程式は\\
\\
y=\frac{\boxed{\ \ アイウ\ \ }}{\boxed{\ \ エオカ\ \ }}\ x+\frac{\boxed{\ \ キクケ\ \ }}{\boxed{\ \ コサシ\ \ }}\ である。\\
\\
(2)CとLが囲む図の斜線部分の面積(※動画参照)は\\
\\
\frac{\boxed{\ \ スセソ\ \ }\sqrt{\boxed{\ \ タチツ\ \ }}}{\boxed{\ \ テトナ\ \ }}\ となる。\\
\\
ただし、次の公式を使ってもかまわない(m,nは正の整数)\\
\int_{\alpha}^{\beta}(x-\alpha)^m(x-\beta)^ndx=\frac{(-1)^nm!n!}{(m+n+1)!}(\beta-\alpha)^{m+n+1}\\
\end{eqnarray}

2022慶應義塾大学環境情報学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ xy平面上の曲線Cをy=x^2(x-1)(x+2)とする。
\\(1)Cに2点で下から接する直線Lの方程式は\\
\\
y=\frac{\boxed{\ \ アイウ\ \ }}{\boxed{\ \ エオカ\ \ }}\ x+\frac{\boxed{\ \ キクケ\ \ }}{\boxed{\ \ コサシ\ \ }}\ である。\\
\\
(2)CとLが囲む図の斜線部分の面積(※動画参照)は\\
\\
\frac{\boxed{\ \ スセソ\ \ }\sqrt{\boxed{\ \ タチツ\ \ }}}{\boxed{\ \ テトナ\ \ }}\ となる。\\
\\
ただし、次の公式を使ってもかまわない(m,nは正の整数)\\
\int_{\alpha}^{\beta}(x-\alpha)^m(x-\beta)^ndx=\frac{(-1)^nm!n!}{(m+n+1)!}(\beta-\alpha)^{m+n+1}\\
\end{eqnarray}

2022慶應義塾大学環境情報学部過去問
投稿日:2022.07.10

<関連動画>

連立指数方程式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式の計算(整式・展開・因数分解)#指数関数と対数関数#指数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
3^{\frac{x}{2}}-2^y=7 \\
3^x-4^y=77
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?$ e\fallingdotseq 2,71$

$6^{\sqrt7}$ VS $7^{\sqrt6}$
この動画を見る 

慶應(総合政策)絶対値のついた三次関数の最大最小

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+3x^2-2$
$|f(-x+2)|$の区間$1 \leqq x \leqq 5$における最大値、最小値を求めよ

出典:2003年慶應義塾大学 過去問
この動画を見る 

福田の数学〜中央大学2022年理工学部第3問〜指数関数の接線と囲まれる部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 関数 f(x) = -xe^x を考える。曲線C: y = f(x)の点(a, f(a)) における接線をl_aと\\
し、接線l_aとy軸の交点を (0, g(a)) とおく。以下の問いに答えよ。\hspace{60pt}\\
(1) 接線l_aの方程式とg (a)を求めよ。\hspace{170pt}\\
以下、aの関数g (a) が極大値をとるときのaの値をbとおく。\hspace{79pt}\\
(2) bを求め、点(b, f(b)) は曲線Cの変曲点であることを示せ。\hspace{76pt}\\
(3) 曲線Cの点 (b, f(b)) における接線l_bと x軸の交点のx座標cを求めよ。さらに、\hspace{10pt}\\
c\leqq x\leqq 0の範囲で曲線Cの概形と接線l_bをxy 平面上に図示せよ。\hspace{50pt}\\
(4)曲線C、接線l_bおよびy軸で囲まれた部分の面積Sを求めよ。 \hspace{73pt}
\end{eqnarray}

2022中央大学理工学部過去問
この動画を見る 

問題は解けるようにできている。 指数の計算 早実

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{(-3)^{20}-(-3)^{15} \times 81}{4} -3^{19}$

早稲田実業学校
この動画を見る 
PAGE TOP