問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ mを実数とし、関数y=|x^2-5x+4|のグラフをC、直線y=mxをlとする。\\
(1)グラフCと直線lの共有点の個数は\\
\boxed{\ \ アイ\ \ } \lt m \lt \boxed{\ \ ウ\ \ }のとき0個\\
m=\boxed{\ \ エオ\ \ }のとき1個\\
m \lt \boxed{\ \ カキ\ \ },\ m=\boxed{\ \ ク\ \ },\ またはm \gt \boxed{\ \ ケ\ \ }のとき2個\\
m=\boxed{\ \ コ\ \ }のとき3個\\
\boxed{\ \ サ\ \ } \lt m \lt \boxed{\ \ シ\ \ }のとき4個\\
以下、グラフCと直線lの共有点の個数が3個の場合を考え、\\
グラフCと直線lの共有点を、x座標が小さい順にP,Q,Rとする。\\
\\
(2)3点P,Q,Rのx座標は、順に\boxed{\ \ ス\ \ }-\sqrt{\boxed{\ \ セ\ \ }},\ \boxed{\ \ ソ\ \ },\ \boxed{\ \ タ\ \ }+\sqrt{\boxed{\ \ チ\ \ }}\ である。\\
\\
(3)グラフCと線分QRで囲まれた部分の面積は\frac{-\ \boxed{\ \ ツ\ \ }+\boxed{\ \ テト\ \ }\sqrt{\boxed{\ \ ナ\ \ }}}{\boxed{\ \ ニ\ \ }}\ である。
\end{eqnarray}
2022慶應義塾大学商学部過去問
\begin{eqnarray}
{\Large\boxed{3}}\ mを実数とし、関数y=|x^2-5x+4|のグラフをC、直線y=mxをlとする。\\
(1)グラフCと直線lの共有点の個数は\\
\boxed{\ \ アイ\ \ } \lt m \lt \boxed{\ \ ウ\ \ }のとき0個\\
m=\boxed{\ \ エオ\ \ }のとき1個\\
m \lt \boxed{\ \ カキ\ \ },\ m=\boxed{\ \ ク\ \ },\ またはm \gt \boxed{\ \ ケ\ \ }のとき2個\\
m=\boxed{\ \ コ\ \ }のとき3個\\
\boxed{\ \ サ\ \ } \lt m \lt \boxed{\ \ シ\ \ }のとき4個\\
以下、グラフCと直線lの共有点の個数が3個の場合を考え、\\
グラフCと直線lの共有点を、x座標が小さい順にP,Q,Rとする。\\
\\
(2)3点P,Q,Rのx座標は、順に\boxed{\ \ ス\ \ }-\sqrt{\boxed{\ \ セ\ \ }},\ \boxed{\ \ ソ\ \ },\ \boxed{\ \ タ\ \ }+\sqrt{\boxed{\ \ チ\ \ }}\ である。\\
\\
(3)グラフCと線分QRで囲まれた部分の面積は\frac{-\ \boxed{\ \ ツ\ \ }+\boxed{\ \ テト\ \ }\sqrt{\boxed{\ \ ナ\ \ }}}{\boxed{\ \ ニ\ \ }}\ である。
\end{eqnarray}
2022慶應義塾大学商学部過去問
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ mを実数とし、関数y=|x^2-5x+4|のグラフをC、直線y=mxをlとする。\\
(1)グラフCと直線lの共有点の個数は\\
\boxed{\ \ アイ\ \ } \lt m \lt \boxed{\ \ ウ\ \ }のとき0個\\
m=\boxed{\ \ エオ\ \ }のとき1個\\
m \lt \boxed{\ \ カキ\ \ },\ m=\boxed{\ \ ク\ \ },\ またはm \gt \boxed{\ \ ケ\ \ }のとき2個\\
m=\boxed{\ \ コ\ \ }のとき3個\\
\boxed{\ \ サ\ \ } \lt m \lt \boxed{\ \ シ\ \ }のとき4個\\
以下、グラフCと直線lの共有点の個数が3個の場合を考え、\\
グラフCと直線lの共有点を、x座標が小さい順にP,Q,Rとする。\\
\\
(2)3点P,Q,Rのx座標は、順に\boxed{\ \ ス\ \ }-\sqrt{\boxed{\ \ セ\ \ }},\ \boxed{\ \ ソ\ \ },\ \boxed{\ \ タ\ \ }+\sqrt{\boxed{\ \ チ\ \ }}\ である。\\
\\
(3)グラフCと線分QRで囲まれた部分の面積は\frac{-\ \boxed{\ \ ツ\ \ }+\boxed{\ \ テト\ \ }\sqrt{\boxed{\ \ ナ\ \ }}}{\boxed{\ \ ニ\ \ }}\ である。
\end{eqnarray}
2022慶應義塾大学商学部過去問
\begin{eqnarray}
{\Large\boxed{3}}\ mを実数とし、関数y=|x^2-5x+4|のグラフをC、直線y=mxをlとする。\\
(1)グラフCと直線lの共有点の個数は\\
\boxed{\ \ アイ\ \ } \lt m \lt \boxed{\ \ ウ\ \ }のとき0個\\
m=\boxed{\ \ エオ\ \ }のとき1個\\
m \lt \boxed{\ \ カキ\ \ },\ m=\boxed{\ \ ク\ \ },\ またはm \gt \boxed{\ \ ケ\ \ }のとき2個\\
m=\boxed{\ \ コ\ \ }のとき3個\\
\boxed{\ \ サ\ \ } \lt m \lt \boxed{\ \ シ\ \ }のとき4個\\
以下、グラフCと直線lの共有点の個数が3個の場合を考え、\\
グラフCと直線lの共有点を、x座標が小さい順にP,Q,Rとする。\\
\\
(2)3点P,Q,Rのx座標は、順に\boxed{\ \ ス\ \ }-\sqrt{\boxed{\ \ セ\ \ }},\ \boxed{\ \ ソ\ \ },\ \boxed{\ \ タ\ \ }+\sqrt{\boxed{\ \ チ\ \ }}\ である。\\
\\
(3)グラフCと線分QRで囲まれた部分の面積は\frac{-\ \boxed{\ \ ツ\ \ }+\boxed{\ \ テト\ \ }\sqrt{\boxed{\ \ ナ\ \ }}}{\boxed{\ \ ニ\ \ }}\ である。
\end{eqnarray}
2022慶應義塾大学商学部過去問
投稿日:2022.06.30