福田の数学〜筑波大学2022年理系第6問〜複素数平面上の点の軌跡と最小値 - 質問解決D.B.(データベース)

福田の数学〜筑波大学2022年理系第6問〜複素数平面上の点の軌跡と最小値

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}}\ iは虚数単位とする。次の条件(\textrm{I}),(\textrm{II})のどちらも満たす複素数z全体の集合を\\
Sとする。\\
(\textrm{I})zの虚部は正である。\\
(\textrm{II})複素数平面上の点A(1),B(1-iz),C(z^2)は一直線上にある。\\
このとき、以下の問いに答えよ。\\
(1)1でない複素数\alphaについて、\alphaの虚部が正であることは、\frac{1}{\alpha-1}の虚部が\\
負であるための必要十分条件であることを示せ。\\
(2)集合Sを複素数平面上に図示せよ。\\
(3)w=\frac{1}{z-1}とする。zがSを動くとき、|w+\frac{i}{\sqrt2}|の最小値を求めよ。
\end{eqnarray}

2022筑波大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}}\ iは虚数単位とする。次の条件(\textrm{I}),(\textrm{II})のどちらも満たす複素数z全体の集合を\\
Sとする。\\
(\textrm{I})zの虚部は正である。\\
(\textrm{II})複素数平面上の点A(1),B(1-iz),C(z^2)は一直線上にある。\\
このとき、以下の問いに答えよ。\\
(1)1でない複素数\alphaについて、\alphaの虚部が正であることは、\frac{1}{\alpha-1}の虚部が\\
負であるための必要十分条件であることを示せ。\\
(2)集合Sを複素数平面上に図示せよ。\\
(3)w=\frac{1}{z-1}とする。zがSを動くとき、|w+\frac{i}{\sqrt2}|の最小値を求めよ。
\end{eqnarray}

2022筑波大学理系過去問
投稿日:2022.05.30

<関連動画>

福田の数学〜千葉大学2023年第8問〜iのn乗根Part2

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{8}$ 実数$a$,$b$と虚数単位$i$を用いて複素数$z$が$z$=$a$+$bi$の形で表されるとき、$a$を$z$の実部、$b$を$z$の虚部と呼び、それぞれ$a$=$Re(z)$,$b$=$Im(z)$と表す。
(1)$z^3$=$i$を満たす複素数$z$をすべて求めよ。
(2)$z^{100}$=$i$を満たす複素数$z$のうち、$Re(z)$≦$\frac{1}{2}$かつ$Im(z)$≧0を満たすものの個数を求めよ。
(3)$n$を正の整数とする。$z^n$=$i$を満たす複素数$z$のうち、$Re(z)$≧$\frac{1}{2}$を満たすものの個数を$N$とする。$N$>$\frac{n}{3}$となるための$n$に関する必要十分条件を求めよ。
この動画を見る 

複素数平面の基本①複素数平面の基本的な考え方

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面の基本的な考え方
この動画を見る 

学習院大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{Z-1-3i}{Z-2}$が純虚数であるような複素数$Z$について
$\vert Z \vert$の最大・最小を求めよ。

出典:2003年学習院大学 過去問
この動画を見る 

cos72°を求めよ(誘導あり)慶應(経済)Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
'02慶応義塾大学過去問題
$Z=cos72^\circ+i sin72^\circ$とおく
$Z^n=1$をみたす最小の自然数nは▢
よって、Zは方程式
$Z^4+▢Z^3+▢Z^2+Z+1=0$の解。
$W=Z+\frac{1}{Z}$とおくと、Wは方程式
$W^2+▢W+▢ = 0$の解
$\frac{1}{Z} = cos72^\circ- i sin72^\circ ,cos72^\circ > 0 $
$cos72^\circ = \frac{\sqrt▢-▢}{▢}$

慶應(経済)過去問
この動画を見る 

長崎大(医、他)虚数方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数C#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z^4=-8-8\sqrt{3}i$
これを解け.

長崎大(医,他)過去問
この動画を見る 
PAGE TOP