ナイスな整数問題 鳥取大(医) - 質問解決D.B.(データベース)

ナイスな整数問題 鳥取大(医)

問題文全文(内容文):
a,b,cは自然数
a≧b≧c

$(1+\displaystyle \frac{1}{a})(1+\displaystyle \frac{1}{b})(1+\displaystyle \frac{1}{c})=2$

をみたす(a,b,c)の組を
すべて求めよ

鳥取大学医学部
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b,cは自然数
a≧b≧c

$(1+\displaystyle \frac{1}{a})(1+\displaystyle \frac{1}{b})(1+\displaystyle \frac{1}{c})=2$

をみたす(a,b,c)の組を
すべて求めよ

鳥取大学医学部
投稿日:2023.11.09

<関連動画>

東京大学 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
n,a,b,c,dは0または正の整数
$
\begin{eqnarray}
\left\{
\begin{array}{l}
a^2+b^2+c^2+d^2 = n^2 -6 \\
a+b+c+d = n \\
a \geqq b \geqq c \geqq d
\end{array}
\right.
\end{eqnarray}
$
を満たす(n,a,b,c,d)数の組を全て求めよ

1980年代東京大学
この動画を見る 

灘中 難関大学並の整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A=123456789$
$A$の2つの数を入れかえてできる数を小さい順に$a_1,a_2・・・・・・a_{36}$とする.
$a_1=123456798$
$a_{36}=923456781$
$b_k=a_k-A,1\leqq k\leqq 36$である.

(1)$1000$で割り切れる$b_k$の個数を求めよ.
(2)$37$で割り切れる$b_k$の個数を求めよ.
(3)$b_1 \times b_2 \times b_3 \times ・・・\times b_{36}$は3で何回割り切れるか

2016灘中過去問
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IA第4問整数〜長方形のタイルを並べて長方形を作る

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
第4問
色のついた長方形を並べて正方形や長方形を作ることを考える。色のついた長方形は、向きを変えずにすき間なく並べることとし、色のついた長方形は十分あるものとする。
(1)横の長さが462で縦の長さが110である赤い長方形を、図1(※動画参照)のように並べて正方形や長方形を作ることを考える。
462と110の両方を割り切る素数のうち最大のものは$\boxed{\ \ アイ\ \ }$である。
赤い長方形を並べて作ることができる正方形のうち、辺の長さが最小であるものは、一辺の長さが$\boxed{\ \ ウエオカ\ \ }$のものである。
また、赤い長方形を並べて正方形ではない長方形を作るとき、横の長さと縦の長さの差の絶対値が最小になるのは、462の約数と110の約数を考えると、差の絶対値が$\boxed{\ \ キク\ \ }$になるときであることがわかる。
縦の長さが横の長さより$\boxed{\ \ キク\ \ }$長い長方形のうち、横の長さが最小であるものは、横の長さが$\boxed{\ \ ケコサシ\ \ }$のものである。
(2)花子さんと太郎さんは、(1)で用いた赤い長方形を1枚以上並べて長方形を作り、その右側に横の長さが363で縦の長さが154である青い長方形を1枚以上並べて、図2(※動画参照)のような正方形や長方形を作ることを考えている。
このとき、赤い長方形を並べてできる長方形の縦の長さと、青い長方形を並べてできる長方形の縦の長さは等しい。よって、図2のような長方形のうち、縦の長さが最小のものは、縦の長さが$\boxed{\ \ スセソ\ \ }$のものであり、図2のような長方形は縦の長さが$\boxed{\ \ スセソ\ \ }$の倍数である。
二人は、次のように話している。
花子:赤い長方形と青い長方形を図2のように並べて正方形を作ってみようよ。
太郎:赤い長方形の横の長さが462で青い長方形の横の長さが363だから、図2のような正方形の横の長さは462と363を組み合わせて作ることができる長さでないといけないね。
花子:正方形だから、横の長さは$\boxed{\ \ スセソ\ \ }$の倍数でもないといけないね。
462と363の最大公約数は$\boxed{\ \ タチ\ \ }$であり、$\boxed{\ \ タチ\ \ }$の倍数のうちで$\boxed{\ \ スセソ\ \ }$の倍数でもある最小の正の整数は$\boxed{\ \ ツテトナ\ \ }$である。
これらのことと、使う長方形の枚数が赤い長方形も青い長方形も1枚以上であることから、図2のような正方形のうち、辺の長さが最小であるものは、一辺の長さが$\boxed{\ \ ニヌネノ\ \ }$のものであることがわかる。

2023共通テスト過去問
この動画を見る 

福田のおもしろ数学271〜再帰関数の値を計算する

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
整数を定義域とする関数が次のように定義されている。
\begin{eqnarray}
f(n)
=
\begin{cases}
n-3 & ( n \geqq 1000 ) \\
f(f(n+5)) & ( n \lt 1000 )
\end{cases}
\end{eqnarray}
このとき$f(84)$を求めよ
この動画を見る 

高専数学 微積II #11 級数の和

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#微分法と積分法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
級数
$\displaystyle \sum_{n=1}^{\infty}\dfrac{1}{n^2+3n+2}$
の和を求めよ.
この動画を見る 
PAGE TOP