福田の数学〜一橋大学2022年文系第4問〜立方体の内部の点と結んだ線分の通過範囲 - 質問解決D.B.(データベース)

福田の数学〜一橋大学2022年文系第4問〜立方体の内部の点と結んだ線分の通過範囲

問題文全文(内容文):
tを実数とし、座標空間に点$A(t-1,t,t+1)$をとる。また、(0,0,0),(1,0,0),
(0,1,0),(1,1,0),(0,0,1),(1,0,1),(0,1,1),(1,1,1)を頂点とする立方体を
Dとする。点PがDの内部及びすべての面上を動くとき、線分APの動く範囲を
Wとし、Wの体積をf(t)とする。
(1)f(-1)を求めよ。
(2)f(t)のグラフを描き、f(t)の最小値を求めよ。

2022一橋大学文系過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
tを実数とし、座標空間に点$A(t-1,t,t+1)$をとる。また、(0,0,0),(1,0,0),
(0,1,0),(1,1,0),(0,0,1),(1,0,1),(0,1,1),(1,1,1)を頂点とする立方体を
Dとする。点PがDの内部及びすべての面上を動くとき、線分APの動く範囲を
Wとし、Wの体積をf(t)とする。
(1)f(-1)を求めよ。
(2)f(t)のグラフを描き、f(t)の最小値を求めよ。

2022一橋大学文系過去問
投稿日:2022.04.17

<関連動画>

ベトナム数学オリンピック

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a+b+c=2022$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}$
$\dfrac{1}{a^{2023}}+\dfrac{1}{b^{2023}}+\dfrac{1}{c^{2023}}=?$
これを解け.

ベトナム数学オリンピック過去問
この動画を見る 

【数Ⅱ】【式と証明】整式の割り算1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の各場合について、定数$a,b$の値を求めよ。
(1) $2x^2+ax+10$を$x^2-3x+b$で割ると、余りが$3x-2$ である。
(2) $x^3+ax^2-5x+4$を$x^2+bx-2$で割ると、余りが$2$である。
この動画を見る 

東大 積分 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \leqq a \leqq \beta$ 実数

$f(x)=x^2-(a+ \beta)z+a \beta$

$\displaystyle \int_{-1}^{ 1 }f(x)dx=1$が成立している。

定積分$s=\displaystyle \int_{0}^{ a }f(x)ax$を$a$の式で表し、$S$の最大値を求めよ。


出典:2008年東京大学 過去問
この動画を見る 

【高校数学】 数Ⅱ-69 円の接線の方程式②

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①円$x^2+y^2+4x-6y-12=0$上の点(1、7)における接線の方程式を求めよう。

②円$x^2+y^2=20$と直線$y=2x+k$が接するとき、定数aの値を求めよう。
この動画を見る 

福田のわかった数学〜高校3年生理系084〜グラフを描こう(6)陰関数のグラフ

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(6)
$y^2=x^2(x+1)$のグラフを描け。ただし凹凸は調べなくてよい。
この動画を見る 
PAGE TOP