福田の数学・入試問題解説〜東北大学2022年理系第5問〜空間内の直線上の点列の極限 - 質問解決D.B.(データベース)

福田の数学・入試問題解説〜東北大学2022年理系第5問〜空間内の直線上の点列の極限

問題文全文(内容文):
座標空間内において、ベクトル
$\overrightarrow{ a }=(1,2,1), \overrightarrow{ b }=(1,1,-1), \overrightarrow{ c }=(0,0,1)$
が定める直線
$l:s\overrightarrow{ a }, l':t\overrightarrow{ b }+\overrightarrow{ c }$
を考える。点$A_1$を原点(0,0,0)とし、点$A_1$から直線l'に下ろした垂線$A_1B_1$と
おく。次に、点$B_1(t_1\overrightarrow{ b }+\overrightarrow{ c })$から直線lに下ろした垂線を$B_1A_2$とおく。
同様に、点$A_k(s_k\overrightarrow{ a })$から直線l'に下ろした垂線を$A_kB_k$、点$B_k(t_k\overrightarrow{ b }+\overrightarrow{ c })$から直線l
に下ろした垂線を$B_kA_{k+1}$とする手順を繰り返して、点$A_n(s_n\overrightarrow{ a }),B_n(t_n\overrightarrow{ b }+\overrightarrow{ c })$
(nは正の整数)を定める。
(1)$s_n$を用いて$s_{n+1}$を表せ。
(2)極限値$S=\lim_{n \to \infty}s_n, T=\lim_{n \to \infty}t_n$を求めよ。
(3)(2)で求めたS,Tに対して、点A,Bをそれぞれ$A(S\overrightarrow{ a }),B(T\overrightarrow{ b }+\overrightarrow{ c })$とおくと、
直線ABは2直線l,l'の両方と直交することを示せ。

2022東北大学理系過去問
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標空間内において、ベクトル
$\overrightarrow{ a }=(1,2,1), \overrightarrow{ b }=(1,1,-1), \overrightarrow{ c }=(0,0,1)$
が定める直線
$l:s\overrightarrow{ a }, l':t\overrightarrow{ b }+\overrightarrow{ c }$
を考える。点$A_1$を原点(0,0,0)とし、点$A_1$から直線l'に下ろした垂線$A_1B_1$と
おく。次に、点$B_1(t_1\overrightarrow{ b }+\overrightarrow{ c })$から直線lに下ろした垂線を$B_1A_2$とおく。
同様に、点$A_k(s_k\overrightarrow{ a })$から直線l'に下ろした垂線を$A_kB_k$、点$B_k(t_k\overrightarrow{ b }+\overrightarrow{ c })$から直線l
に下ろした垂線を$B_kA_{k+1}$とする手順を繰り返して、点$A_n(s_n\overrightarrow{ a }),B_n(t_n\overrightarrow{ b }+\overrightarrow{ c })$
(nは正の整数)を定める。
(1)$s_n$を用いて$s_{n+1}$を表せ。
(2)極限値$S=\lim_{n \to \infty}s_n, T=\lim_{n \to \infty}t_n$を求めよ。
(3)(2)で求めたS,Tに対して、点A,Bをそれぞれ$A(S\overrightarrow{ a }),B(T\overrightarrow{ b }+\overrightarrow{ c })$とおくと、
直線ABは2直線l,l'の両方と直交することを示せ。

2022東北大学理系過去問
投稿日:2022.03.23

<関連動画>

早稲田大 みんな大好きBBB

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{i=6}^{\infty} \dfrac{1800}{(n-5)(n-4)(n-1)n}$
これを求めよ。

早稲田大過去問
この動画を見る 

福田のおもしろ数学247〜複雑な無理方程式の解を1つ見つける

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$
5(\sqrt{1-x}+\sqrt{1+x})=6x+8\sqrt{1-x^2}
$の解を1つ求めて下さい。
この動画を見る 

福田のわかった数学〜高校3年生理系040〜極限(40)関数の極限、色々な極限(10)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 色々な極限(10)
$\displaystyle \lim_{x \to \infty}(2x+3)\sin(\log(x+3)-$$\log x)$
を求めよ。
この動画を見る 

福田のおもしろ数学317〜複雑な数列の極限

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle a_n=n\log n\log(n+1)\{\sin(\frac{1}{\log n})-\sin(\frac{1}{\log(n+1})\}$
$\displaystyle \lim_{n\to \infty}a_n$を求めて下さい。
この動画を見る 

福田のわかった数学〜高校3年生理系013〜極限(12)無限等比級数とグラフ

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(13)
$x≠-1$とする。
$x+\displaystyle \frac{x}{1+x}+$$\displaystyle \frac{x}{(1+x)^2}+$$\displaystyle \frac{x}{(1+x)^3}+\cdots$

が収束する$x$の範囲を求めよ。このとき、
その和$f(x)$のグラフを描け。
この動画を見る 
PAGE TOP