福田の入試問題解説〜東京大学2022年文系第4問〜複雑な反復試行の確率 - 質問解決D.B.(データベース)

福田の入試問題解説〜東京大学2022年文系第4問〜複雑な反復試行の確率

問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{4}}}\ Oを原点とする座標平面上で考える。0以上の整数kに対して、ベクトル\overrightarrow{ v_k }を\\
\overrightarrow{ v_k }=(\cos\frac{2k\pi}{3}, \sin\frac{2k\pi}{3})\\
と定める。投げたとき表と裏がどちらも\frac{1}{2}の確率で出るコインをN回投げて、\\
座標平面上に点X_0,X_1,X_2,\ldots,X_Nを以下の規則(\textrm{i}),(\textrm{ii})に従って定める。\\
(\textrm{i})X_0はOにある。\\
(\textrm{ii})nを1以上N以下の整数とする。X_{n-1}が定まったとし、\\
X_nを次のように定める。\\
・n回目のコイン投げで表が出た場合、\overrightarrow{ OX_n }=\overrightarrow{ OX_{n-1} }+\overrightarrow{ v_k }によりX_nを定める。\\
ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。\\
・n回目のコイン投げで裏が出た場合、X_nをX_{n-1}と定める。\\
(1)N=5とする。X_5がOにある確率を求めよ。\\
(2)N=98とする。X_{98}がOにあり、かつ、表が90回、裏が8回出る確率を求めよ。
\end{eqnarray}

2022東京大学文系過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{4}}}\ Oを原点とする座標平面上で考える。0以上の整数kに対して、ベクトル\overrightarrow{ v_k }を\\
\overrightarrow{ v_k }=(\cos\frac{2k\pi}{3}, \sin\frac{2k\pi}{3})\\
と定める。投げたとき表と裏がどちらも\frac{1}{2}の確率で出るコインをN回投げて、\\
座標平面上に点X_0,X_1,X_2,\ldots,X_Nを以下の規則(\textrm{i}),(\textrm{ii})に従って定める。\\
(\textrm{i})X_0はOにある。\\
(\textrm{ii})nを1以上N以下の整数とする。X_{n-1}が定まったとし、\\
X_nを次のように定める。\\
・n回目のコイン投げで表が出た場合、\overrightarrow{ OX_n }=\overrightarrow{ OX_{n-1} }+\overrightarrow{ v_k }によりX_nを定める。\\
ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。\\
・n回目のコイン投げで裏が出た場合、X_nをX_{n-1}と定める。\\
(1)N=5とする。X_5がOにある確率を求めよ。\\
(2)N=98とする。X_{98}がOにあり、かつ、表が90回、裏が8回出る確率を求めよ。
\end{eqnarray}

2022東京大学文系過去問
投稿日:2022.03.20

<関連動画>

巣鴨高校 3つのサイコロ 4で割り切れる

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
大、中、小3つのサイコロを同時に投げたとき、出た目の積が4で割り切れる確率を求めよ。
2023巣鴨高等学校
この動画を見る 

京大の確率の問題!解けますか?【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
さいころを$n$個同時に投げるとき、出た目の数の和が$n+3$になる確率を求めよ。

京都大過去問
この動画を見る 

東大入試問題、場合の数、頑張れば、中学生、中学受験生にも解けるぞ Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを正の整数とし、n個のボールを3つの箱に分けて入れる問題を考える。ただし、1個のボールも入らない箱があってもよいものとする。以下に述べる4つの場合について、それぞれ相異なるなる入れ方の総数を求めたい。

(1)1からnまで異なる番号のついたこのボールを、A,B,Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか 。

(2)互いに区別のつかないn個のボールを、A,B,Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(3) 1からnまで異なる番号のついたn個のボールを、区別のつかない3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(4)nが6の倍数6mであるとき、n個の互いに区別のつかないボールを、区別のつかない3つの箱に入れる場合、その入れ方は全部で何通りあるか。

東大過去問
この動画を見る 

福田の数学〜北里大学2022年医学部第3問〜確率と漸化式の融合問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
1つの箱を置ける台と2つの箱A, Bがある。箱Aには赤玉2個、青玉2個が
入っており、箱Bには白玉3個、青玉1個が入っている。台の上に箱Aを置き、
次の操作を繰り返す。
(操作) 台に置かれている箱から玉を1個取り出して色を調べてから箱に戻し、台
に置かれている箱を台から降ろす。取りだした玉が青球であれば箱Bを台
に置き、それ以外の色の玉であれば箱Aを台に置く。
正の整数nに対し、n回目の操作を終えたときに、台に箱Aが置かれている確率
をa_n、箱Bが置かれている確率をb_nとおく。次の問いに答えよ。
(1) 正の整数nに対し、$b_n$と$a_{n+1}$をそれぞれ $a_n$ を用いて表せ。
(2) 正の整数nに対し、$a_n$をnを用いて表せ。
(3) 正の整数nに対し、1回目からn回目までのn回の操作で白玉を1回も取り出
さない確率をnを用いて表せ。
(4)正の整数nに対し、1回目からn回目までのn回の操作で白玉をちょうど1回
だけ取り出す確率をnを用いて表せ。

2022北里大学医学部過去問
この動画を見る 

福田のおもしろ数学172〜1000枚の1円玉を10個の袋に入れて1000円までのすべての金額が払えるようにする方法

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1000枚の1円玉を10個の袋に分けます。適当な袋を組み合わせて1円から1000円まですべてを表せるようにするにはどう分ければいい?
この動画を見る 
PAGE TOP