福田の入試問題解説〜東京大学2022年文系第1問〜放物線と接線 - 質問解決D.B.(データベース)

福田の入試問題解説〜東京大学2022年文系第1問〜放物線と接線

問題文全文(内容文):
a,bを実数とする。座標平面上の放物線$y=x^2+ax+b$をCとおく。
Cは、原点で垂直に交わる2本の接線$l_1,l_2$を持つとする。
ただし、Cと$l_1$の接点$P_1$のx座標は、Cと$l_2$の接点$P_2$のx座標より小さいとする。
(1)bをaで表せ。またaの値は全ての実数をとりうることを示せ。
(2)i=1,2に対し、円$D_i$を、放物線Cの軸上に中心を持ち、点$P_i$で$l_i$
と接するものと定める。$D_2$の半径が$D_1$の半径の2倍となるとき、aの値を求めよ。

2022東京大学文系過去問
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とする。座標平面上の放物線$y=x^2+ax+b$をCとおく。
Cは、原点で垂直に交わる2本の接線$l_1,l_2$を持つとする。
ただし、Cと$l_1$の接点$P_1$のx座標は、Cと$l_2$の接点$P_2$のx座標より小さいとする。
(1)bをaで表せ。またaの値は全ての実数をとりうることを示せ。
(2)i=1,2に対し、円$D_i$を、放物線Cの軸上に中心を持ち、点$P_i$で$l_i$
と接するものと定める。$D_2$の半径が$D_1$の半径の2倍となるとき、aの値を求めよ。

2022東京大学文系過去問
投稿日:2022.03.14

<関連動画>

【高校数学】2重根号~この動画で十分です~ 1-10【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2重根号 解説動画です
この動画を見る 

千葉大 整数解を持つ条件

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
Pは素数であり,
$P^2+(5-P^2)x-3P=0$が整数解をもつのは$P=2$に限ることを示せ.

千葉大過去問
この動画を見る 

福田のわかった数学〜高校1年生046〜三角形への応用(3)

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 三角形への応用(3)
右の図(※動画参照)において、$I$は$\triangle ABC$の内心である。$AB=5,\ BC=10$
$CA=7$のとき、$AR,\ IR$を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題084〜東北大学2018年度理系第4問〜三角形の内接円と外接円の半径の関係

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#三角比(三角比・拡張・相互関係・単位円)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 三角形ABCの内接円の半径をr, 外接円の半径をRとし、h=$\frac{r}{R}$とする。
また、$\angle$A=2α, $\angle$B=2β, $\angle$C=2γ とおく。
(1)h=4$\sin\alpha\sin\beta\sin\gamma$となることを示せ。
(2)三角形ABCが直角三角形のときh≦$\sqrt 2-1$が成り立つことを示せ。
また、等号が成り立つのはどのような場合か。
(3)一般の三角形ABCに対してh≦$\frac{1}{2}$が成り立つことを示せ。また等号が成り立つのはどのような場合か。

2018東北大学理系過去問
この動画を見る 

福田の数学〜早稲田大学2024教育学部第1問(4)〜領域と奇跡

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#図形と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$
\begin{eqnarray}
\fcolorbox{#000}{ #fff }{$1$} \ (4) \\
\end{eqnarray}
$
$xy$平面上に3点$O(0,0),A(1,0),B(1,1)$をとる。点$(x,y)$が三角形$OAB$の周および内部を動くときに点$(x+y,xy)$が動く範囲の面積を求めよ。
この動画を見る 
PAGE TOP