福田の入試問題解説〜北海道大学2022年理系第5問〜複素数平面上の点の軌跡とドモアブルの定理 - 質問解決D.B.(データベース)

福田の入試問題解説〜北海道大学2022年理系第5問〜複素数平面上の点の軌跡とドモアブルの定理

問題文全文(内容文):
複素数zに関する次の2つの方程式を考える。ただし、$\bar{ z }$はzと共役な複素数とし、
iを虚数単位とする。
$z\bar{ z }=4 \ldots\ldots$①     $|z|=|z-\sqrt3+i| \ldots\ldots②$

(1)①、②それぞれの方程式について、その解z全体が表す図形を複素数平面上に
図示せよ。
(2)①、②の共通解となる複素数を全て求めよ。
(3)(2)で求めた全ての複素数の積をwとおく。このとき$w^n$が負の実数となる
ための整数nの必要十分条件を求めよ。

2022北海道大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数zに関する次の2つの方程式を考える。ただし、$\bar{ z }$はzと共役な複素数とし、
iを虚数単位とする。
$z\bar{ z }=4 \ldots\ldots$①     $|z|=|z-\sqrt3+i| \ldots\ldots②$

(1)①、②それぞれの方程式について、その解z全体が表す図形を複素数平面上に
図示せよ。
(2)①、②の共通解となる複素数を全て求めよ。
(3)(2)で求めた全ての複素数の積をwとおく。このとき$w^n$が負の実数となる
ための整数nの必要十分条件を求めよ。

2022北海道大学理系過去問
投稿日:2022.03.13

<関連動画>

福田の数学〜浜松医科大学2023年医学部第3問〜複素数平の絶対値と偏角Part1

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
Sを実部、虚部ともに整数であるような0以外の複素数全体の集合、Tを偏角 が0以上$\displaystyle \frac{π}{2}$未満であるようなSの要素全体の集合とする。またiは虚数単位とする。以下の問いに答えよ。
(1)$α=2$, $β=1+i$, $γ=1$のとき、 $|αβγ|$ の値を求めよ。
(2)複素数zについて、 arg z = $\displaystyle \frac{π}{8}$のとき arg(iz) の値を求めよ。
(3) α, ß, γ を Tの要素とする。このとき、$0 < |αβγ| ≦ \sqrt{5}$ を満たす α, ß, γ の
組の総数kの値を求めよ。
(4)α, ß, γをSの要素とする。このとき、$0 < |αβγ| ≦ \sqrt{5}$ および
$\displaystyle \frac{π}{8} ≦arg(αßγ) < \displaystyle \frac{5π}{8}$
を満たす α, β, yの組の総数をmとするとき、mをkで割った商と余りを求め
よ。

2023浜松医科大学医過去問
この動画を見る 

大学入試問題#594「やばいのは見た目だけ」 東京帝国大学(1926) #複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$\sqrt[ 3 ]{ i }$を求めよ。
$(i^2=-1)$

出典:1926年東京帝国大学医学部 入試問題
この動画を見る 

藤田医科大 ドモアブルの定理

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#数学(高校生)#藤田医科大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1+i)^n=(1-i)n$をみたす2023以下の自然数nの個数を答えよ.

2023藤田医科大過去問
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜ド・モアブルの定理(3)

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
①$z^4=-8+8\sqrt3i$ を解け。
②$z=\displaystyle \frac{\sqrt3}{2}+\displaystyle \frac{1}{2}i$ のとき、$(1+\sqrt3i)z^n+2i=0$
を満たす最小の自然数$n$を求めよ。
この動画を見る 

福田の数学〜早稲田大学2023年教育学部第1問(3)〜連立漸化式と複素数平面

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$x_0=0,y_0=-1$のとき、非負整数$n\geqq 0$に対して、
$x_{n+1}=(\cos \frac{3\pi}{11})x_n-(\sin \frac{3\pi}{11)}y_n$
$y_{n+1}=(\cos \frac{3\pi}{11})x_n+(\sin \frac{3\pi}{11)}y_n$
のとき、$x_n$が最小となる最初のnを求めよ。

2023早稲田大学教育学部過去問
この動画を見る 
PAGE TOP