福田の数学〜慶應義塾大学2022年薬学部第1問(7)〜直三角柱の切断面の面積の最小 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年薬学部第1問(7)〜直三角柱の切断面の面積の最小

問題文全文(内容文):
(7)1辺の長さが$\sqrt2$の正三角形を底面とし、高さが4の直三角柱を考える。
この直三角柱を以下の条件①と条件②を共に満たす平面で切断するとき、切断面の
面積の最小値は$\boxed{\ \ シ\ \ }$である。ただし、直三角柱は底面と側面が垂直である三角柱
のことである。
条件① 切断面が直角三角形になる。
条件② 切断面の図形のすべての辺が直三角柱の側面上にある。

2022慶應義塾大学薬学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形の性質#微分法と積分法#学校別大学入試過去問解説(数学)#立体図形#立体切断#空間における垂直と平行と多面体(オイラーの法則)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(7)1辺の長さが$\sqrt2$の正三角形を底面とし、高さが4の直三角柱を考える。
この直三角柱を以下の条件①と条件②を共に満たす平面で切断するとき、切断面の
面積の最小値は$\boxed{\ \ シ\ \ }$である。ただし、直三角柱は底面と側面が垂直である三角柱
のことである。
条件① 切断面が直角三角形になる。
条件② 切断面の図形のすべての辺が直三角柱の側面上にある。

2022慶應義塾大学薬学部過去問
投稿日:2022.03.04

<関連動画>

立方体の3点切断 聖望学園(埼玉)

アイキャッチ画像
単元: #数学(中学生)#立体図形#立体切断#立体図形その他#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
3点を通る平面で切る
・切り口の図形の名称は?
・切断面の面積は?
*図は動画内参照

聖望学園高等学校
この動画を見る 

【改良版】立体の展開図のイメージ

アイキャッチ画像
単元: #数学(中学生)#平面図形#立体図形#立体切断#平面図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【改良版】立体の展開図のイメージ
※図は動画内参照
この動画を見る 

2024年渋谷教育学園渋谷中算数大問②中学受験指導歴20年以上のプロ解説

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#立体図形#立体切断#渋谷教育学園渋谷中学
指導講師: 重吉
問題文全文(内容文):
2⃣図は動画内参照
図1は18個の立方体を積み上げて作った直方体です。図1の直方体を平面で切り、その後、 すべてバラバラにしたときの立体の個数を考えます。
例えば図1の直方体を3点ア、イ、ウを通る平面で切り、その後、すべてバラバラにすると、 9個の立方体と18個の切られた立体に分かれ、立体は合計で27個となります。 次の問いに答えなさい。

(1) 図1の直方体を3点イ、ウ、エを通る平面で切り、その後、すべてバラバラにすると、 立体は合計で何個になりますか。

図2は36個の立方体を積み上げて、直方体を作ったものです。

(2) 図2の直方体を3点A, B. Cを通る平面で切り、その後、すべてバラバラにすると、 立体は合計で何個になりますか。
(3) 図2の直方体を3点A、B、Dを通る平面で切り、その後、ずべてバラバラにすると、 立体は合計で何個になりますか。
この動画を見る 

福田の数学〜慶應義塾大学薬学部2025第1問(2)〜正八面体に内接する立方体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#立体図形#立体切断#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)$a$は$a\gt 0$を満たす実数とする。

$xyz$空間に$6$点$(a,0,0),(0,a,0),(0,0,a),$

$(-a,0,0)(0,-a,0)(0,0,-a)$を頂点とする多面体

$S$がある。

(i)$S$の体積は$\boxed{オ}$である。

(ii)立方体$U$のすべての頂点が$S$の辺上にあるとき、

$U$の体積は$\boxed{カ}$である。

$2025$年慶應義塾大学薬学部過去問題
この動画を見る 

【受験算数】立体切断演習問題その4「切断面を伸ばして考える2」

アイキャッチ画像
単元: #算数(中学受験)#立体図形#立体切断
教材: #SPX#6年算数W-支援#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
下の図の立体は、1辺12cmの立方体です。CP=8cm, EQ=6cmです。
(1) Pを通りQFと平行な直線が、BCと交わる点をRとします。BRの長さは何cmですか。
この動画を見る 
PAGE TOP