問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (7)1辺の長さが\sqrt2の正三角形を底面とし、高さが4の直三角柱を考える。\\
この直三角柱を以下の条件①と条件②を共に満たす平面で切断するとき、切断面の\\
面積の最小値は\boxed{\ \ シ\ \ }である。ただし、直三角柱は底面と側面が垂直である三角柱\\
のことである。\\
条件① 切断面が直角三角形になる。\\
条件② 切断面の図形のすべての辺が直三角柱の側面上にある。
\end{eqnarray}
2022慶應義塾大学薬学部過去問
\begin{eqnarray}
{\Large\boxed{1}}\ (7)1辺の長さが\sqrt2の正三角形を底面とし、高さが4の直三角柱を考える。\\
この直三角柱を以下の条件①と条件②を共に満たす平面で切断するとき、切断面の\\
面積の最小値は\boxed{\ \ シ\ \ }である。ただし、直三角柱は底面と側面が垂直である三角柱\\
のことである。\\
条件① 切断面が直角三角形になる。\\
条件② 切断面の図形のすべての辺が直三角柱の側面上にある。
\end{eqnarray}
2022慶應義塾大学薬学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#図形の性質#微分法と積分法#学校別大学入試過去問解説(数学)#立体図形#立体切断#空間における垂直と平行と多面体(オイラーの法則)#面積、体積#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (7)1辺の長さが\sqrt2の正三角形を底面とし、高さが4の直三角柱を考える。\\
この直三角柱を以下の条件①と条件②を共に満たす平面で切断するとき、切断面の\\
面積の最小値は\boxed{\ \ シ\ \ }である。ただし、直三角柱は底面と側面が垂直である三角柱\\
のことである。\\
条件① 切断面が直角三角形になる。\\
条件② 切断面の図形のすべての辺が直三角柱の側面上にある。
\end{eqnarray}
2022慶應義塾大学薬学部過去問
\begin{eqnarray}
{\Large\boxed{1}}\ (7)1辺の長さが\sqrt2の正三角形を底面とし、高さが4の直三角柱を考える。\\
この直三角柱を以下の条件①と条件②を共に満たす平面で切断するとき、切断面の\\
面積の最小値は\boxed{\ \ シ\ \ }である。ただし、直三角柱は底面と側面が垂直である三角柱\\
のことである。\\
条件① 切断面が直角三角形になる。\\
条件② 切断面の図形のすべての辺が直三角柱の側面上にある。
\end{eqnarray}
2022慶應義塾大学薬学部過去問
投稿日:2022.03.04