福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[2]。対数の大小判定の問題。 - 質問解決D.B.(データベース)

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[2]。対数の大小判定の問題。

問題文全文(内容文):
[2]a,bは正の実数であり、a1,b1を満たすとする。太郎さんは
logablogbaの大小関係を調べることにした。
(1)太郎さんは次のような考察をした。
まず、log39=    , log93=1    である、この場合

log39>log93
が成り立つ。
一方、log14    =32,log14=23である。この場合

log14    <log14
が成り立つ。
(2)ここで
logab=t 
とおく。
(1)の考察をもとにして、太郎さんは次の式が成り立つと推測し、
それが正しいことを確かめることにした。
logba=1t 
①により、    である。このことにより    が得られ、②が
成り立つことが確かめられる。

    の解答群
ak=t at=b ba=t
bt=a ta=b tb=a

    の解答群
a=t1b a=b1t b=t1a
b=a1t t=b1a t=a1b

(3)次に、太郎さんは(2)の考察をもとにして
t>1t 
を満たす実数t(t0)の値の範囲を求めた。
太郎さんの考察
t>0ならば、③の両辺にtを掛けることにより、t2>1を得る。
このようなt(t>0)の値の範囲は1<tである。
t<0ならば、③の両辺にtを掛けることにより、t2<1を得る。
このようなt(t<0)の値の範囲は1<t<0である。

この考察により、③を満たすt(t0)の値の範囲は
1<t<0, 1<t
であることが分かる。
ここで、aの値を一つ定めたとき、不等式
logab>logba 
を満たす実数b(b>0, b1)の値の範囲について考える。
④を満たすbの値の範囲はa>1のときは    であり、
0<a<1のときは    である。

    の解答群
0<b<1a, 1<b<a   0<b<1a, a<b
1a<b<1, 1<b<a   1a<b<1, a<b

    の解答群
0<b<a, 1<b<1a   0<b<a, 1a<b
a<b<1, 1<b<1a   a<b<1, 1a<b

(4)p=1213, q=1211, r=1413とする。
次の⓪~③のうち、正しいものは    である。

    の解答群
logpq>logqpかつlogpr>logrp
logpq>logqpかつlogpr<logrp
logpq<logqpかつlogpr>logrp
logpq<logqpかつlogpr<logrp

2022共通テスト数学過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[2]a,bは正の実数であり、a1,b1を満たすとする。太郎さんは
logablogbaの大小関係を調べることにした。
(1)太郎さんは次のような考察をした。
まず、log39=    , log93=1    である、この場合

log39>log93
が成り立つ。
一方、log14    =32,log14=23である。この場合

log14    <log14
が成り立つ。
(2)ここで
logab=t 
とおく。
(1)の考察をもとにして、太郎さんは次の式が成り立つと推測し、
それが正しいことを確かめることにした。
logba=1t 
①により、    である。このことにより    が得られ、②が
成り立つことが確かめられる。

    の解答群
ak=t at=b ba=t
bt=a ta=b tb=a

    の解答群
a=t1b a=b1t b=t1a
b=a1t t=b1a t=a1b

(3)次に、太郎さんは(2)の考察をもとにして
t>1t 
を満たす実数t(t0)の値の範囲を求めた。
太郎さんの考察
t>0ならば、③の両辺にtを掛けることにより、t2>1を得る。
このようなt(t>0)の値の範囲は1<tである。
t<0ならば、③の両辺にtを掛けることにより、t2<1を得る。
このようなt(t<0)の値の範囲は1<t<0である。

この考察により、③を満たすt(t0)の値の範囲は
1<t<0, 1<t
であることが分かる。
ここで、aの値を一つ定めたとき、不等式
logab>logba 
を満たす実数b(b>0, b1)の値の範囲について考える。
④を満たすbの値の範囲はa>1のときは    であり、
0<a<1のときは    である。

    の解答群
0<b<1a, 1<b<a   0<b<1a, a<b
1a<b<1, 1<b<a   1a<b<1, a<b

    の解答群
0<b<a, 1<b<1a   0<b<a, 1a<b
a<b<1, 1<b<1a   a<b<1, 1a<b

(4)p=1213, q=1211, r=1413とする。
次の⓪~③のうち、正しいものは    である。

    の解答群
logpq>logqpかつlogpr>logrp
logpq>logqpかつlogpr<logrp
logpq<logqpかつlogpr>logrp
logpq<logqpかつlogpr<logrp

2022共通テスト数学過去問
投稿日:2022.01.20

<関連動画>

【共テ数学IIB】知らなきゃ損な裏技集__これで解答時間をキュッと短縮します(指数・対数、微分積分、数列、ベクトル)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#微分法と積分法#指数関数#対数関数#数列#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共テ数学IIB】解答時間短縮、裏技集説明動画です。(指数・対数、微分積分、数列、ベクトル)
この動画を見る 

【数Ⅱ】【指数関数と対数関数】指数対数計算 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1問
次の式の値を求めよ。
(1)5log57
(2)101+log103
(3)36log65
(4)7log494

第2問
xyz0,2x=5y=10z2 のとき、等式 1x+1y=2z を証明せよ。

第3問
log112 の小数第1位の数を求めよ。
この動画を見る 

三重大 対数と二次関数

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
α>0とする.
f(x)=log3(12x2+12αx+9)

f(x)が整数となるx0xαの範囲でちょうど6個あるようなαの範囲を求めよ.

三重大過去問
この動画を見る 

福田の数学〜早稲田大学2023年人間科学部第2問〜対数不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2 不等式
log4(16x2y2)32+2log16(2x)
を満たす点P(x,y)の中で、x座標とy座標がともに整数であるものは    個ある。このうち、x座標が最小となる点は(    ,     )である。
この動画を見る 

【短時間でポイントチェック!!】常用対数を用いた桁数の求め方〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
log102=0.3010,log103=0.4771とする。
250は何桁の整数か?
この動画を見る 
PAGE TOP preload imagepreload image