福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[2]。対数の大小判定の問題。 - 質問解決D.B.(データベース)

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[2]。対数の大小判定の問題。

問題文全文(内容文):
\begin{eqnarray}
[2]a,bは正の実数であり、a≠1,b≠1を満たすとする。太郎さんは\\
\log_abと\log_baの大小関係を調べることにした。\\
(1)太郎さんは次のような考察をした。\\
まず、\log_39=\boxed{\ \ ス\ \ }, \log_93=\frac{1}{\boxed{\ \ ス\ \ }}である、この場合\\
\\
\log_39 \gt \log_93\\
\\
が成り立つ。\\
一方、\log_{\frac{1}{4}}\boxed{\ \ セ\ \ }=-\frac{3}{2},\log_{\boxed{セ}}\frac{1}{4}=-\frac{2}{3}である。この場合\\
\\
\log_{\frac{1}{4}}\boxed{\ \ セ\ \ } \lt \log_{\boxed{セ}}\frac{1}{4}\\
\\
が成り立つ。\\
(2)ここで\\
log_ab=t \ldots①\\
とおく。\\
(1)の考察をもとにして、太郎さんは次の式が成り立つと推測し、\\
それが正しいことを確かめることにした。\\
\log_ba=\frac{1}{t} \ldots②\\
①により、\boxed{\ \ ソ\ \ }である。このことにより\boxed{\ \ タ\ \ }が得られ、②が\\
成り立つことが確かめられる。\\
\\
\\
\boxed{\ \ ソ\ \ }の解答群\\
⓪a^k=t ①a^t=b ②b^a=t\\
③b^t=a ④t^a=b ⑤t^b=a\\
\\
\boxed{\ \ タ\ \ }の解答群\\
⓪a=t^{\frac{1}{b}} ①a=b^{\frac{1}{t}} ②b=t^{\frac{1}{a}}\\
③b=a^{\frac{1}{t}} ④t=b^{\frac{1}{a}} ⑤t=a^{\frac{1}{b}}\\
\\
(3)次に、太郎さんは(2)の考察をもとにして\\
t \gt \frac{1}{t} \ldots③\\
を満たす実数t(t≠0)の値の範囲を求めた。\\
\\
太郎さんの考察\\
t \gt 0ならば、③の両辺にtを掛けることにより、t^2 \gt 1を得る。\\
このようなt(t \gt 0)の値の範囲は1 \lt tである。\\
t \lt 0ならば、③の両辺にtを掛けることにより、t^2 \lt 1を得る。\\
このようなt(t \lt 0)の値の範囲は-1 \lt t \lt 0である。\\
\\
この考察により、③を満たすt(t≠0)の値の範囲は\\
-1 \lt t \lt 0, 1 \lt t\\
であることが分かる。\\
ここで、aの値を一つ定めたとき、不等式\\
\log_ab \gt \log_ba \ldots④\\
を満たす実数b(b \gt 0, b≠1)の値の範囲について考える。\\
④を満たすbの値の範囲はa \gt 1のときは\boxed{\ \ チ\ \ }であり、\\
0 \lt a \lt 1のときは\boxed{\ \ ツ\ \ }である。\\
\\
\boxed{\ \ チ\ \ }の解答群\\
⓪0 \lt b \lt \frac{1}{a}, 1 \lt b \lt a   ①0 \lt b \lt \frac{1}{a}, a \lt b\\
②\frac{1}{a} \lt b \lt 1, 1 \lt b \lt a   ③\frac{1}{a} \lt b \lt 1, a \lt b\\
\\
\\
\boxed{\ \ ツ\ \ }の解答群\\
⓪0 \lt b \lt a, 1 \lt b \lt \frac{1}{a}   ①0 \lt b \lt a, \frac{1}{a} \lt b\\
②a \lt b \lt 1, 1 \lt b \lt \frac{1}{a}   ③a \lt b \lt 1, \frac{1}{a} \lt b\\
\\
\\
(4)p=\frac{12}{13}, q=\frac{12}{11}, r=\frac{14}{13}とする。\\
次の⓪~③のうち、正しいものは\boxed{\ \ テ\ \ }である。\\
\\
\boxed{\ \ テ\ \ }の解答群\\
⓪\log_pq \gt \log_qpかつ\log_pr \gt \log_rp\\
①\log_pq \gt \log_qpかつ\log_pr \lt \log_rp\\
②\log_pq \lt \log_qpかつ\log_pr \gt \log_rp\\
③\log_pq \lt \log_qpかつ\log_pr \lt \log_rp\\
\end{eqnarray}

2022共通テスト数学過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
[2]a,bは正の実数であり、a≠1,b≠1を満たすとする。太郎さんは\\
\log_abと\log_baの大小関係を調べることにした。\\
(1)太郎さんは次のような考察をした。\\
まず、\log_39=\boxed{\ \ ス\ \ }, \log_93=\frac{1}{\boxed{\ \ ス\ \ }}である、この場合\\
\\
\log_39 \gt \log_93\\
\\
が成り立つ。\\
一方、\log_{\frac{1}{4}}\boxed{\ \ セ\ \ }=-\frac{3}{2},\log_{\boxed{セ}}\frac{1}{4}=-\frac{2}{3}である。この場合\\
\\
\log_{\frac{1}{4}}\boxed{\ \ セ\ \ } \lt \log_{\boxed{セ}}\frac{1}{4}\\
\\
が成り立つ。\\
(2)ここで\\
log_ab=t \ldots①\\
とおく。\\
(1)の考察をもとにして、太郎さんは次の式が成り立つと推測し、\\
それが正しいことを確かめることにした。\\
\log_ba=\frac{1}{t} \ldots②\\
①により、\boxed{\ \ ソ\ \ }である。このことにより\boxed{\ \ タ\ \ }が得られ、②が\\
成り立つことが確かめられる。\\
\\
\\
\boxed{\ \ ソ\ \ }の解答群\\
⓪a^k=t ①a^t=b ②b^a=t\\
③b^t=a ④t^a=b ⑤t^b=a\\
\\
\boxed{\ \ タ\ \ }の解答群\\
⓪a=t^{\frac{1}{b}} ①a=b^{\frac{1}{t}} ②b=t^{\frac{1}{a}}\\
③b=a^{\frac{1}{t}} ④t=b^{\frac{1}{a}} ⑤t=a^{\frac{1}{b}}\\
\\
(3)次に、太郎さんは(2)の考察をもとにして\\
t \gt \frac{1}{t} \ldots③\\
を満たす実数t(t≠0)の値の範囲を求めた。\\
\\
太郎さんの考察\\
t \gt 0ならば、③の両辺にtを掛けることにより、t^2 \gt 1を得る。\\
このようなt(t \gt 0)の値の範囲は1 \lt tである。\\
t \lt 0ならば、③の両辺にtを掛けることにより、t^2 \lt 1を得る。\\
このようなt(t \lt 0)の値の範囲は-1 \lt t \lt 0である。\\
\\
この考察により、③を満たすt(t≠0)の値の範囲は\\
-1 \lt t \lt 0, 1 \lt t\\
であることが分かる。\\
ここで、aの値を一つ定めたとき、不等式\\
\log_ab \gt \log_ba \ldots④\\
を満たす実数b(b \gt 0, b≠1)の値の範囲について考える。\\
④を満たすbの値の範囲はa \gt 1のときは\boxed{\ \ チ\ \ }であり、\\
0 \lt a \lt 1のときは\boxed{\ \ ツ\ \ }である。\\
\\
\boxed{\ \ チ\ \ }の解答群\\
⓪0 \lt b \lt \frac{1}{a}, 1 \lt b \lt a   ①0 \lt b \lt \frac{1}{a}, a \lt b\\
②\frac{1}{a} \lt b \lt 1, 1 \lt b \lt a   ③\frac{1}{a} \lt b \lt 1, a \lt b\\
\\
\\
\boxed{\ \ ツ\ \ }の解答群\\
⓪0 \lt b \lt a, 1 \lt b \lt \frac{1}{a}   ①0 \lt b \lt a, \frac{1}{a} \lt b\\
②a \lt b \lt 1, 1 \lt b \lt \frac{1}{a}   ③a \lt b \lt 1, \frac{1}{a} \lt b\\
\\
\\
(4)p=\frac{12}{13}, q=\frac{12}{11}, r=\frac{14}{13}とする。\\
次の⓪~③のうち、正しいものは\boxed{\ \ テ\ \ }である。\\
\\
\boxed{\ \ テ\ \ }の解答群\\
⓪\log_pq \gt \log_qpかつ\log_pr \gt \log_rp\\
①\log_pq \gt \log_qpかつ\log_pr \lt \log_rp\\
②\log_pq \lt \log_qpかつ\log_pr \gt \log_rp\\
③\log_pq \lt \log_qpかつ\log_pr \lt \log_rp\\
\end{eqnarray}

2022共通テスト数学過去問
投稿日:2022.01.20

<関連動画>

大学入試問題#458「これはさすがに落とせない!」 横浜国立大学(2000) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#対数関数#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} \displaystyle \frac{log\ x}{(1+x)^2} dx$

出典:2000年横浜国立大学 入試問題
この動画を見る 

中学生も挑戦して どっちがでかい

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
どっちがでかい?\\
2^{266}\quad VS\quad 7^{100}

\end{eqnarray}
$
この動画を見る 

超基本問題 対数方程式

アイキャッチ画像
単元: #対数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023長崎県立大学過去問題
解け
$log_{3}(9x+18)+log_3(x+3)=3$
この動画を見る 

慶應SFCを目指す仮面浪人女子に数学を教えるよ

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学を基礎から解説していきます.
この動画を見る 

対数の性質

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a^{\log_{b}c}=c^{\log_{b}a}$

を示せ。
この動画を見る 
PAGE TOP