問題文全文(内容文):
\begin{eqnarray}
第5問 \triangle ABCの重心をGとし、線分AG上で点Aとは異なる位置に点Dをとる。\\
直線AGと辺BCの交点をEとする。また、直線BC上で辺BC上にはない位置に点Fをとる。\\
直線DFと辺ABの交点をP、直線DFと辺ACの交点をQとする。\\
(1)点Dは線分AGの中点であるとする。このとき、\triangle ABCの形状に関係なく\frac{AD}{DE}=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\\
である。また、点Fの位置に関係なく\frac{BP}{AP}=\boxed{\ \ ウ\ \ }×\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }},\\
\frac{CQ}{AQ}=\boxed{\ \ カ\ \ }×\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}であるので、常に\frac{BP}{AP}+\frac{CQ}{AQ}=\boxed{\ \ ケ\ \ }\\
\\
\\
\boxed{\ \ エ\ \ }~\boxed{\ \ ケ\ \ }の解答群\\
⓪BC ①BF ②CF ③EF ④FP ⑤FQ ⑥PQ\\
\\
(2)AB=9, BC=8, AC=6とし、(1)と同様に、点Dは線分AGの中点であるとする。\\
ここで、4点B,C,Q,Pが同一円周上にあるように点Fをとる。このとき、\\
\\
AQ=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ APであるから\\
\\
AP=\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}, AQ=\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チ\ \ }}であり、CF=\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }}である。\\
\\
(3)\triangle ABCの形状や点Fの位置に関係なく、常に\frac{BP}{AP}+\frac{CQ}{AQ}=10となるのは\\
\frac{AD}{DG}=\frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌ\ \ }}のときである。
\end{eqnarray}
2022共通テスト数学過去問
\begin{eqnarray}
第5問 \triangle ABCの重心をGとし、線分AG上で点Aとは異なる位置に点Dをとる。\\
直線AGと辺BCの交点をEとする。また、直線BC上で辺BC上にはない位置に点Fをとる。\\
直線DFと辺ABの交点をP、直線DFと辺ACの交点をQとする。\\
(1)点Dは線分AGの中点であるとする。このとき、\triangle ABCの形状に関係なく\frac{AD}{DE}=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\\
である。また、点Fの位置に関係なく\frac{BP}{AP}=\boxed{\ \ ウ\ \ }×\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }},\\
\frac{CQ}{AQ}=\boxed{\ \ カ\ \ }×\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}であるので、常に\frac{BP}{AP}+\frac{CQ}{AQ}=\boxed{\ \ ケ\ \ }\\
\\
\\
\boxed{\ \ エ\ \ }~\boxed{\ \ ケ\ \ }の解答群\\
⓪BC ①BF ②CF ③EF ④FP ⑤FQ ⑥PQ\\
\\
(2)AB=9, BC=8, AC=6とし、(1)と同様に、点Dは線分AGの中点であるとする。\\
ここで、4点B,C,Q,Pが同一円周上にあるように点Fをとる。このとき、\\
\\
AQ=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ APであるから\\
\\
AP=\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}, AQ=\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チ\ \ }}であり、CF=\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }}である。\\
\\
(3)\triangle ABCの形状や点Fの位置に関係なく、常に\frac{BP}{AP}+\frac{CQ}{AQ}=10となるのは\\
\frac{AD}{DG}=\frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌ\ \ }}のときである。
\end{eqnarray}
2022共通テスト数学過去問
単元:
#数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
第5問 \triangle ABCの重心をGとし、線分AG上で点Aとは異なる位置に点Dをとる。\\
直線AGと辺BCの交点をEとする。また、直線BC上で辺BC上にはない位置に点Fをとる。\\
直線DFと辺ABの交点をP、直線DFと辺ACの交点をQとする。\\
(1)点Dは線分AGの中点であるとする。このとき、\triangle ABCの形状に関係なく\frac{AD}{DE}=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\\
である。また、点Fの位置に関係なく\frac{BP}{AP}=\boxed{\ \ ウ\ \ }×\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }},\\
\frac{CQ}{AQ}=\boxed{\ \ カ\ \ }×\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}であるので、常に\frac{BP}{AP}+\frac{CQ}{AQ}=\boxed{\ \ ケ\ \ }\\
\\
\\
\boxed{\ \ エ\ \ }~\boxed{\ \ ケ\ \ }の解答群\\
⓪BC ①BF ②CF ③EF ④FP ⑤FQ ⑥PQ\\
\\
(2)AB=9, BC=8, AC=6とし、(1)と同様に、点Dは線分AGの中点であるとする。\\
ここで、4点B,C,Q,Pが同一円周上にあるように点Fをとる。このとき、\\
\\
AQ=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ APであるから\\
\\
AP=\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}, AQ=\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チ\ \ }}であり、CF=\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }}である。\\
\\
(3)\triangle ABCの形状や点Fの位置に関係なく、常に\frac{BP}{AP}+\frac{CQ}{AQ}=10となるのは\\
\frac{AD}{DG}=\frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌ\ \ }}のときである。
\end{eqnarray}
2022共通テスト数学過去問
\begin{eqnarray}
第5問 \triangle ABCの重心をGとし、線分AG上で点Aとは異なる位置に点Dをとる。\\
直線AGと辺BCの交点をEとする。また、直線BC上で辺BC上にはない位置に点Fをとる。\\
直線DFと辺ABの交点をP、直線DFと辺ACの交点をQとする。\\
(1)点Dは線分AGの中点であるとする。このとき、\triangle ABCの形状に関係なく\frac{AD}{DE}=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\\
である。また、点Fの位置に関係なく\frac{BP}{AP}=\boxed{\ \ ウ\ \ }×\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }},\\
\frac{CQ}{AQ}=\boxed{\ \ カ\ \ }×\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}であるので、常に\frac{BP}{AP}+\frac{CQ}{AQ}=\boxed{\ \ ケ\ \ }\\
\\
\\
\boxed{\ \ エ\ \ }~\boxed{\ \ ケ\ \ }の解答群\\
⓪BC ①BF ②CF ③EF ④FP ⑤FQ ⑥PQ\\
\\
(2)AB=9, BC=8, AC=6とし、(1)と同様に、点Dは線分AGの中点であるとする。\\
ここで、4点B,C,Q,Pが同一円周上にあるように点Fをとる。このとき、\\
\\
AQ=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ APであるから\\
\\
AP=\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}, AQ=\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チ\ \ }}であり、CF=\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }}である。\\
\\
(3)\triangle ABCの形状や点Fの位置に関係なく、常に\frac{BP}{AP}+\frac{CQ}{AQ}=10となるのは\\
\frac{AD}{DG}=\frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌ\ \ }}のときである。
\end{eqnarray}
2022共通テスト数学過去問
投稿日:2022.01.19