福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[1]。2次方程式の解に関する問題。 - 質問解決D.B.(データベース)

福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[1]。2次方程式の解に関する問題。

問題文全文(内容文):
${\Large\boxed{1}}$[1]cを正の定数とする。xの2次方程式$2x^2+(4c-3)x+2c^2-c-11=0 \ldots①$
について考える。
(1)$c=1$のとき、①の左辺を因数分解すると$(\boxed{ア}\ x+\boxed{イ})(x-\boxed{ウ})$であるから、
①の解は$x=-\frac{\boxed{イ}}{\boxed{ア}}, \boxed{ウ}$である。

(2)$c=2$のとき、①の解は$x=\frac{-\ \boxed{エ}±\sqrt{\boxed{オカ}}}{\boxed{キ}}$ であり、大きい方の解を$\alpha$とすると
$\frac{5}{\alpha}=\frac{\boxed{ク}+\sqrt{\boxed{ケコ}}}{\boxed{サ}}$である。また、$m \lt \frac{5}{\alpha} \lt m+1$を満たす整数$m$は$\boxed{シ}$である。

(3)太郎さんと花子さんは、①の解について考察している。
太郎:①の解はcの値によって、ともに有理数である場合もあれば、ともに無理数
である場合もあるね。cがどのような値のときに、解は有理数になるのかな。
花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。

①の解が異なる2つの有理数であるような正の整数cの個数は$\boxed{ス}$個である。

2021共通テスト数学過去問
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[1]cを正の定数とする。xの2次方程式$2x^2+(4c-3)x+2c^2-c-11=0 \ldots①$
について考える。
(1)$c=1$のとき、①の左辺を因数分解すると$(\boxed{ア}\ x+\boxed{イ})(x-\boxed{ウ})$であるから、
①の解は$x=-\frac{\boxed{イ}}{\boxed{ア}}, \boxed{ウ}$である。

(2)$c=2$のとき、①の解は$x=\frac{-\ \boxed{エ}±\sqrt{\boxed{オカ}}}{\boxed{キ}}$ であり、大きい方の解を$\alpha$とすると
$\frac{5}{\alpha}=\frac{\boxed{ク}+\sqrt{\boxed{ケコ}}}{\boxed{サ}}$である。また、$m \lt \frac{5}{\alpha} \lt m+1$を満たす整数$m$は$\boxed{シ}$である。

(3)太郎さんと花子さんは、①の解について考察している。
太郎:①の解はcの値によって、ともに有理数である場合もあれば、ともに無理数
である場合もあるね。cがどのような値のときに、解は有理数になるのかな。
花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。

①の解が異なる2つの有理数であるような正の整数cの個数は$\boxed{ス}$個である。

2021共通テスト数学過去問
投稿日:2022.01.06

<関連動画>

【数Ⅰ】【2次関数】2次関数 解の個数、連立 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
mは定数とする。放物線 y=x²+(m+3)x+3m+4とx軸の共有点の個数を調べよ。

次の2次不等式の解がすべての実数であるとき、定数mの値の範囲を求めよ。
  (1) x²-mx+1>0   (2) -x²+mx+2m≦0

次の連立不等式を満たす整数xの値を全て求めよ。
  (1) 2x²-x-3<0 (2) x²+2x>1
  3x²-10x+3<0   x²-x≦6
この動画を見る 

因数分解や解の公式が不要な新しい解き方~2次関数・2次方程式~

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle
(1)\,x^2-2x-24=0
$
$\displaystyle
(2)\,3x^2-7x-6=0
$
この動画を見る 

中部大(経済)整式の剰余

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(2x^3+x^2+1)^3$を$x^2-x+1$で割った余りを求めよ

出典:中部大学経営情報学部 過去問
この動画を見る 

決め手は角度。大阪桐蔭

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数A#図形の性質#図形と計量#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△CDQ=?
*図は動画内参照

大阪桐蔭高等学校
この動画を見る 

福田の一夜漬け数学〜2次関数・2次不等式(2)絶対不等式〜高校1年生

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
① 任意の実数xに対して、不等式$ax^2-2\sqrt3x+a+2 \leqq 0$が成り立つ
ような定数aの範囲を求めよ。
②$0 \leqq x \leqq 8$の全てのxの値に対して、不等式$x^2-2mx+m+6 \gt 0$が
成り立つような定数mの値の範囲を求めよ。
この動画を見る 
PAGE TOP