問題文全文(内容文):
(2)xy平面上において、点(4,3)を中心とする半径1の円とちょくせん$y=mx$が共有点を持つとき、
定数mの取り得る最大値は$\dfrac{\fbox{ウ}}{\fbox{エ}}+\dfrac{\fbox{オ}\sqrt{\fbox{カ}}}{\fbox{キク}}$である。
2023慶應義塾大学商学部過去問
(2)xy平面上において、点(4,3)を中心とする半径1の円とちょくせん$y=mx$が共有点を持つとき、
定数mの取り得る最大値は$\dfrac{\fbox{ウ}}{\fbox{エ}}+\dfrac{\fbox{オ}\sqrt{\fbox{カ}}}{\fbox{キク}}$である。
2023慶應義塾大学商学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
(2)xy平面上において、点(4,3)を中心とする半径1の円とちょくせん$y=mx$が共有点を持つとき、
定数mの取り得る最大値は$\dfrac{\fbox{ウ}}{\fbox{エ}}+\dfrac{\fbox{オ}\sqrt{\fbox{カ}}}{\fbox{キク}}$である。
2023慶應義塾大学商学部過去問
(2)xy平面上において、点(4,3)を中心とする半径1の円とちょくせん$y=mx$が共有点を持つとき、
定数mの取り得る最大値は$\dfrac{\fbox{ウ}}{\fbox{エ}}+\dfrac{\fbox{オ}\sqrt{\fbox{カ}}}{\fbox{キク}}$である。
2023慶應義塾大学商学部過去問
投稿日:2023.11.25