福田の数学〜(2)から先行きが怪しくなってくる〜慶應義塾大学2023年経済学部第4問〜対数関数の最大 - 質問解決D.B.(データベース)

福田の数学〜(2)から先行きが怪しくなってくる〜慶應義塾大学2023年経済学部第4問〜対数関数の最大

問題文全文(内容文):
x,yを正の実数とし、$2\log_{ 2 } x+\log_{ 2 } y$とする。また、kを正の実数とする。
(1)x,yがx+y=kまたは、kx+y=2Kを満たすとする。このとき、zの取りうる値の最大値$z_1$及びその時のxの値を、Kを用いて表せ。
(2)x,yはx+y=KまたはKx+y=2Kを満たすとする。このとき、zの取りうる値の最大値$z_2$が(1)の$z_1$と一致するための必要十分条件を求めよ。
(3)nを自然数とし、$K=2^\frac{n}{5}$とする。(2)の$z_2$について、$\dfrac{3}{2} \lt z_2 \lt \dfrac{7}{2}$を満たす。
nの最大値および最小値を求めよ。必要があれば$1.58 \lt \log_{2}3 \lt 1.59$を用いよ。

2023慶應義塾大学経済学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
x,yを正の実数とし、$2\log_{ 2 } x+\log_{ 2 } y$とする。また、kを正の実数とする。
(1)x,yがx+y=kまたは、kx+y=2Kを満たすとする。このとき、zの取りうる値の最大値$z_1$及びその時のxの値を、Kを用いて表せ。
(2)x,yはx+y=KまたはKx+y=2Kを満たすとする。このとき、zの取りうる値の最大値$z_2$が(1)の$z_1$と一致するための必要十分条件を求めよ。
(3)nを自然数とし、$K=2^\frac{n}{5}$とする。(2)の$z_2$について、$\dfrac{3}{2} \lt z_2 \lt \dfrac{7}{2}$を満たす。
nの最大値および最小値を求めよ。必要があれば$1.58 \lt \log_{2}3 \lt 1.59$を用いよ。

2023慶應義塾大学経済学部過去問
投稿日:2023.11.21

<関連動画>

中央大(法)ガウス記号 対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$[log_2(x+50)]=[log_2x]+3$を満たす$x$の範囲を求めよ

出典:2015年中央大学法学部 過去問
この動画を見る 

対数 札幌医科大

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$2^n$が4桁となる自然数を求めよ.
②$5^{130}$は何桁か.

2019札幌医大過去問
この動画を見る 

対数の近似値 立命館

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\log_{10}7$を小数第2位まで求めよ.
$\log_{10}2=0.3010$,
$\log_{10}3=0.4771$

立命館大過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[2]。対数の大小判定の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
[2]a,bは正の実数であり、a≠1,b≠1を満たすとする。太郎さんは\\
\log_abと\log_baの大小関係を調べることにした。\\
(1)太郎さんは次のような考察をした。\\
まず、\log_39=\boxed{\ \ ス\ \ }, \log_93=\frac{1}{\boxed{\ \ ス\ \ }}である、この場合\\
\\
\log_39 \gt \log_93\\
\\
が成り立つ。\\
一方、\log_{\frac{1}{4}}\boxed{\ \ セ\ \ }=-\frac{3}{2},\log_{\boxed{セ}}\frac{1}{4}=-\frac{2}{3}である。この場合\\
\\
\log_{\frac{1}{4}}\boxed{\ \ セ\ \ } \lt \log_{\boxed{セ}}\frac{1}{4}\\
\\
が成り立つ。\\
(2)ここで\\
log_ab=t \ldots①\\
とおく。\\
(1)の考察をもとにして、太郎さんは次の式が成り立つと推測し、\\
それが正しいことを確かめることにした。\\
\log_ba=\frac{1}{t} \ldots②\\
①により、\boxed{\ \ ソ\ \ }である。このことにより\boxed{\ \ タ\ \ }が得られ、②が\\
成り立つことが確かめられる。\\
\\
\\
\boxed{\ \ ソ\ \ }の解答群\\
⓪a^k=t ①a^t=b ②b^a=t\\
③b^t=a ④t^a=b ⑤t^b=a\\
\\
\boxed{\ \ タ\ \ }の解答群\\
⓪a=t^{\frac{1}{b}} ①a=b^{\frac{1}{t}} ②b=t^{\frac{1}{a}}\\
③b=a^{\frac{1}{t}} ④t=b^{\frac{1}{a}} ⑤t=a^{\frac{1}{b}}\\
\\
(3)次に、太郎さんは(2)の考察をもとにして\\
t \gt \frac{1}{t} \ldots③\\
を満たす実数t(t≠0)の値の範囲を求めた。\\
\\
太郎さんの考察\\
t \gt 0ならば、③の両辺にtを掛けることにより、t^2 \gt 1を得る。\\
このようなt(t \gt 0)の値の範囲は1 \lt tである。\\
t \lt 0ならば、③の両辺にtを掛けることにより、t^2 \lt 1を得る。\\
このようなt(t \lt 0)の値の範囲は-1 \lt t \lt 0である。\\
\\
この考察により、③を満たすt(t≠0)の値の範囲は\\
-1 \lt t \lt 0, 1 \lt t\\
であることが分かる。\\
ここで、aの値を一つ定めたとき、不等式\\
\log_ab \gt \log_ba \ldots④\\
を満たす実数b(b \gt 0, b≠1)の値の範囲について考える。\\
④を満たすbの値の範囲はa \gt 1のときは\boxed{\ \ チ\ \ }であり、\\
0 \lt a \lt 1のときは\boxed{\ \ ツ\ \ }である。\\
\\
\boxed{\ \ チ\ \ }の解答群\\
⓪0 \lt b \lt \frac{1}{a}, 1 \lt b \lt a   ①0 \lt b \lt \frac{1}{a}, a \lt b\\
②\frac{1}{a} \lt b \lt 1, 1 \lt b \lt a   ③\frac{1}{a} \lt b \lt 1, a \lt b\\
\\
\\
\boxed{\ \ ツ\ \ }の解答群\\
⓪0 \lt b \lt a, 1 \lt b \lt \frac{1}{a}   ①0 \lt b \lt a, \frac{1}{a} \lt b\\
②a \lt b \lt 1, 1 \lt b \lt \frac{1}{a}   ③a \lt b \lt 1, \frac{1}{a} \lt b\\
\\
\\
(4)p=\frac{12}{13}, q=\frac{12}{11}, r=\frac{14}{13}とする。\\
次の⓪~③のうち、正しいものは\boxed{\ \ テ\ \ }である。\\
\\
\boxed{\ \ テ\ \ }の解答群\\
⓪\log_pq \gt \log_qpかつ\log_pr \gt \log_rp\\
①\log_pq \gt \log_qpかつ\log_pr \lt \log_rp\\
②\log_pq \lt \log_qpかつ\log_pr \gt \log_rp\\
③\log_pq \lt \log_qpかつ\log_pr \lt \log_rp\\
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

広島大 対数 3次方程式 解の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a$は正の定数
$log_a(3x)+log_{\sqrt{ a }}(a-x)=1$を満たす実数$x$がちょうど2つである$a$の範囲は?

出典:広島大学 過去問
この動画を見る 
PAGE TOP