東大数学!少しひらめきを求められる問題です(誘導あり)【東京大学】【数学 入試問題】 - 質問解決D.B.(データベース)

東大数学!少しひらめきを求められる問題です(誘導あり)【東京大学】【数学 入試問題】

問題文全文(内容文):
(1)実数$x$が$-1<x<1,x \neq 0$を満たすとき,次の不等式を示せ。

$(1-x)^{1-\dfrac{1}{x}}<(1+x)^{\dfrac{1}{x}}$

(2)次の不等式を示せ。

$0.9999^{101}<0.99<0.9999^{100}$

東大過去問
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)実数$x$が$-1<x<1,x \neq 0$を満たすとき,次の不等式を示せ。

$(1-x)^{1-\dfrac{1}{x}}<(1+x)^{\dfrac{1}{x}}$

(2)次の不等式を示せ。

$0.9999^{101}<0.99<0.9999^{100}$

東大過去問
投稿日:2022.11.30

<関連動画>

微分方程式③【一般解を求める】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\frac{dx}{dt}=\frac{x}{t}$
(2)$\frac{dx}{dt}=\frac{3t^2x}{t^3+1}$
(3)$\frac{dx}{dt}=\frac{x^2+1}{2xt}$
この動画を見る 

大学入試問題#423「よくみる問題?」 自治医科大学(2020) #面積

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\sqrt{ \displaystyle \frac{x}{6} }+\sqrt{ \displaystyle \frac{y}{4} }=1$と$x$軸、$y$軸で囲まれた部分の面積を求めよ。

出典:2020年自治医科大学 入試問題
この動画を見る 

【数Ⅲ】【微分とその応用】不等式の応用5 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のことが成り立つことを証明せよ。

$0≦x≦1$のとき

$1-x+x²e^x≦e^x≦1+x+\displaystyle \frac{1}{2}
x²e^x$
この動画を見る 

頻出!微分のよく見るような問題【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
曲線$y=\displaystyle \frac{1}{2}(x^2+1)$上の点$P$における接線は$x$軸と交わるとし,その交点を$\varrho$とおく。線分$P\varrho$の長さを$L$とするとき,$L$が取りうる値の最小値を求めよ。

京都大過去問
この動画を見る 

あけましておめでとうございます

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
正の実数解を求めよ.
$2^x=x^2$

この動画を見る 
PAGE TOP