福田のわかった数学〜高校2年生079〜三角関数(18)2直線のなす角(2) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生079〜三角関数(18)2直線のなす角(2)

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(18) なす角(2)\\
\\
y=3x+1と\frac{\pi}{6}の角をなし、原点を通る直線の方程式を求めよ。
\end{eqnarray}
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(18) なす角(2)\\
\\
y=3x+1と\frac{\pi}{6}の角をなし、原点を通る直線の方程式を求めよ。
\end{eqnarray}
投稿日:2021.11.21

<関連動画>

数Ⅲ頻出問題!確実に取れるようになっておこう!【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\triangle$ABCは条件$\angle B$=2,$\angle A,BC$=1を満たす三角形のうちで
面積が最大のものであるとする。
このとき、$cos\angle B$を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生081〜三角関数(20)18°系の三角比(1)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(20) 18°系の三角比(1)\\
\sin\frac{\pi}{10}の値を求めよ。
\end{eqnarray}
この動画を見る 

【数Ⅱ】三角関数:方程式6x²-xy-y²=0は交わる2直線を表す。このとき、2直線のなす角θ(0≦θ≦π/2)を求めよ。

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
方程式$6x^2-xy-y^2=0$は交わる2直線を表す。このとき、2直線のなす角$\theta(0\leqq\theta\leqq \dfrac{\pi}{2}$)を求めよ。
この動画を見る 

【数Ⅱ】三角関数:2倍角の公式の利用! 直線y=1/3 xが直線y=axとx軸の正の向きとのなす角の二等分線となっているとき、aの値を求めよ。

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
直線$y=\dfrac{1}{3}$ xが直線$y=ax$とx軸の正の向きとのなす角の二等分線となっているとき、aの値を求めよ。
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第1問(2)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(2)角θに関する方程式\hspace{280pt}\\
\cos 4θ=\cos θ\ \ \ \ \ \ \ (0\leqq θ\leqq \pi)\hspace{30pt}...①\hspace{180pt}\\
について考える。①を満たすθは小さい方から順に\hspace{160pt}\\
θ=0,\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\pi,\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\pi,\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}\pi\hspace{180pt}\\
の4つである。一方、θが①を満たすとき、t=\cos θとおくとtは\hspace{104pt}\\
\boxed{\ \ ス\ \ }t^4 - \boxed{\ \ セ\ \ }t^2+\boxed{\ \ ソ\ \ }=t\hspace{30pt}...②\hspace{104pt}\\
を満たす。t=1,\cos \frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\piは②の解なので、2次方程式\hspace{124pt}\\
\boxed{\ \ タ\ \ }t^2+\boxed{\ \ チ\ \ }t-1=0\hspace{174pt}\\
は\cos \frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\pi,\cos \frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}\piを解にもつ。これより、\hspace{134pt}\\
\cos \frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\pi=\frac{\sqrt{\boxed{\ \ ツ\ \ }}-\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }},\cos \frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}\pi=-\frac{\sqrt{\boxed{\ \ ツ\ \ }}+\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}であることが分かる。
\end{eqnarray}
この動画を見る 
PAGE TOP