【良問】素数を扱え!考え方をきっちり理解したい整数問題です【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

【良問】素数を扱え!考え方をきっちり理解したい整数問題です【京都大学】【数学 入試問題】

問題文全文(内容文):
$p$が素数ならば,$p^4+14$は素数でないことを示せ。

京都大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$p$が素数ならば,$p^4+14$は素数でないことを示せ。

京都大過去問
投稿日:2022.09.01

<関連動画>

東大 整数問題 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は自然数

(1)
$x+y+z=xyz(x \leqq y \leqq z)$を満たす$(x,y,z)$をすべて求めよ

(2)
$x^3+y^3+z^3=xyz$を満たす$(x,y,z)$は存在しないことを示せ

出典:2006年東京大学 過去問
この動画を見る 

息抜き 約数の個数 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2020^{2020}$の約数の個数を$N$
$N$を2019で割った余りを求めよ
この動画を見る 

数学オリンピック日本予選 合同式の基本

単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1111^{2018}$を$11111$で割ったあまりを求めよ.

数学オリンピック過去問
この動画を見る 

整数問題 修道高校

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
n(n+1)が88の倍数になるような正の整数nのうち最小のものは?

修道高等学校
この動画を見る 

【整数問題】超典型的な問題!解けますか?【数学 入試問題】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{1}{6}$かつ$m<n$を満たす正の整数$m,n$の組($m,n$)をすべて求めよ。
この動画を見る 
PAGE TOP