3通りで証明できる!?おもしろい解法を紹介【数学 三角関数】 - 質問解決D.B.(データベース)

3通りで証明できる!?おもしろい解法を紹介【数学 三角関数】

問題文全文(内容文):
$tan10°=tan20°・tan30°・tan40°$を示せ。
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$tan10°=tan20°・tan30°・tan40°$を示せ。
投稿日:2022.08.11

<関連動画>

【高校数学】 数Ⅱ-109 2直線のなす角

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
交わる2直線$y=m,x+n,、y=m_2x+n_2$が垂直でないとき、そのなす鋭角を$\theta$とすると$\tan \theta=$①____

◎次の2直線のなす角$\theta$を求めよう。ただし、$0\lt \theta \lt \displaystyle \frac{π}{2}$とする。

②$y=-3x+5.y=2x$

③$y=\sqrt{ 3 }x,y=x-5$

④$\sqrt{ 3 }x-2y=4,3\sqrt{ 3 }x+y-2=0$
この動画を見る 

福田の数学〜早稲田大学2021年商学部第1問(1)〜三角形と三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$
(1)三角形$\rm ABC$において、$\rm \angle B=2\alpha, \angle C=2\beta$とする。
$\tan\alpha\tan\beta=x, \rm \dfrac{AB+AC}{BC}=y$
とするとき、$y$を$x$で表すと、$y=\boxed{ア}$となる。

2021早稲田大学商学部過去問
この動画を見る 

数学「大学入試良問集」【8−2 三角関数の解の個数】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(\theta)=a(\sqrt{ 3 }\ \sin\theta+\cos\theta)+\sin\theta(\sin\theta+\sqrt{ 3 }\ \cos\theta)$について、次の各問いに答えよ。
ただし、$0 \leqq x \leqq \pi$とする。
(1)$t=\sqrt{ 3 }\ \sin\theta+\cos\theta$のグラフをかけ。
(2)$\sin\theta(\sin\theta+\sqrt{ 3 }\ \cos\theta)$を$t$を用いて表せ。
(3)方程式$f(\theta)=0$が相異なる3つの解をもつときの$a$の値の範囲を求めよ。
この動画を見る 

【数Ⅱ】【三角関数】三角関数の合成6 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数 y=asinx+bcosxはx=$\frac{π}{6}$で最大値をとり, また, 最小値 -5である。定数a,bの値を求めよ。
この動画を見る 

【高校数学】2018年度センター試験・数学ⅡB・過去問解説~大問1の1三角関数~【数学ⅡB】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 1ラジアンとは、㋐のことである。
  ㋐に当てはまるものを、次の⓪~③のうちから一つ選べ。

  ⓪半径が1、面積が1の扇形の中心角の大きさ
  ①半径がx、面積が1の扇形の中心角の大きさ
  ②半径が1、張の長さが1の扇形の中心角の大きさ
  ③半径がx、弧の長さが1の扇形の中心角の大きさ


(2) 144°を弧度で表すと$\displaystyle \frac{㋑}{㋒}$xラジアンである。
  また、$\displaystyle \frac{23}{12}$xラジアンを度で表すと[エオカ]である。


(3) $\displaystyle \frac{x}{2}$≦θ≦xの範囲で2sin(θ+$\displaystyle \frac{π}{5}$)-2cos(θ+$\displaystyle \frac{π}{30}$=1を満たすθの値を求めよう。
  x=θ+$\displaystyle \frac{π}{5}$とおくと、①は2sin x-2cos(x-$\displaystyle \frac{π}{㋖}$=1と表せる。
  加法定理を用いると、この式はsin x-$\sqrt{ ㋗ }$cos x=1となる。

  さらに、三角関数の合成を用いるとsin(x-$\displaystyle \frac{π}{㋘}$)=$\displaystyle \frac{1}{㋙}$と変形できる。
  x=θ+$\displaystyle \frac{π}{5}$、$\displaystyle \frac{π}{2}$≦θ≦πだから、θ=$\displaystyle \frac{㋚㋛}{㋜㋝}$πである。
この動画を見る 
PAGE TOP