差がつく問題!記号が多くても焦らずに解けば大丈夫!【お茶の水女子大学】【数学 入試問題】 - 質問解決D.B.(データベース)

差がつく問題!記号が多くても焦らずに解けば大丈夫!【お茶の水女子大学】【数学 入試問題】

問題文全文(内容文):
$m$を2以上の自然数,$n$を自然数とするとき,次の不等式

${}_{mn} \mathrm {C}_n≧m^n>\displaystyle \sum_{i=0}^{n-1} m^i$

が成り立つことを示せ。

お茶の水女子大過去問
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$m$を2以上の自然数,$n$を自然数とするとき,次の不等式

${}_{mn} \mathrm {C}_n≧m^n>\displaystyle \sum_{i=0}^{n-1} m^i$

が成り立つことを示せ。

お茶の水女子大過去問
投稿日:2022.08.08

<関連動画>

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題4。数列の問題。

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
以下のように、歩行者と自転車が自宅を出発して移動と停止を繰り返してい
る。歩行者と自転車の動きについて、数学的に考えてみよう。
自宅を原点とする数直線を考え、歩行者と自転車をその数直線上を動く点とみ
なす。数直線上の点の座標がyであるとき、その点は位置にあるということに
する。また、歩行者が自宅を出発してからx分経過した時点を時刻xと表す。歩
行者は時刻0に自宅を出発し、正の向きに毎分1の速さで歩き始める。自転車は
時刻2に自宅を出発し、毎分2の速さで歩行者を追いかける。自転車が歩行者に
追いつくと、歩行者と自転車はともに1分だけ停止する。その後、歩行者は再び
正の向きに毎分1の速さで歩き出し、自転車は毎分2の速さで自宅に戻る。自転
車は自宅に到着すると、1分だけ停止した後、再び毎分2の速さで歩行者を追い
かける。これを繰り返し、自転車は自宅と歩行者の間を往復する。
$x=a_n$を自転車がn回目に自宅を出発する時刻とし、$y=b_n$をそのときの歩
行者の位置とする。

(1) 花子さんと太郎さんは、数列$\left\{a_n\right\}, \left\{b_n\right\}$の一般項を求めるために、歩行者
と自転車について、時刻において位置yにいることをOを原点とする座標
平面上の点(x,y)で表すことにした。
$a_1=2,b_1=2$により、自転車が最初に自宅を出発するときの時刻と自転
車の位置を表す点の座標は(2,0)であり、その時の時刻と歩行者の位置を
表す点の座標は(2,2)である。また、自転車が最初に歩行者に追いつくとき
の時刻と位置を表す点の座標は$(\boxed{\ \ ア\ \ },\boxed{\ \ ア\ \ })$である。よって
$a_2=\boxed{\ \ イ\ \ }, b_2=\boxed{\ \ ウ\ \ }$
である。

花子:数列$\left\{a_n\right\}, \left\{b_n\right\}$の一般項について考える前に、
$(\boxed{\ \ ア\ \ },\boxed{\ \ ア\ \ })$の求め方について整理してみようか。
太郎:花子さんはどうやって求めたの?
花子:自転車が歩行者を追いかけるときに、間隔が1分間に1ずつ縮まっていくこと
を利用したよ。
太郎:歩行者と自転車の動きをそれぞれ直線の方程式で表して、交点を
計算して求めることもできるね。
自転車がn回目に自宅を出発するときの時刻と自転車の位置を表す点の座標
は$(a_n,0)$であり、そのときの時刻と歩行者の位置を表す点の座標は
$(a_n,b_n)$である。よって、n回目に自宅を出発した自転車が次に歩行者に
追いつくときの時刻と位置を表す点の座標は、$a_n,b_n$を用いて、
$(\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ })$と表せる。

$\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$a_n$ ①$b_n$ ②$2a_n$
③$a_n+b_n$ ④$2b_n$ ⑤$3a_n$
⑥$2a_n+b_n$ ⑦$a_n+2b_n$ ⑧$3b_n$

以上から、数列$\left\{a_n\right\}, \left\{b_n\right\}$について、自然数nに対して、関係式
$a_{n+1}=a_n+\boxed{\ \ カ\ \ }\ b_n+\boxed{\ \ キ\ \ } \ldots①$
$b_{n+1}=3b_n+\boxed{\ \ ク\ \ } \ldots②$
が成り立つことが分かる。まず、$b_1=2$と②から
$b_n=\boxed{\ \ ケ\ \ } (n=1,2,3,\ldots)$
を得る。この結果と、$a_1=2$および1から
$a_n=\boxed{\ \ コ\ \ } (n=1,2,3,\ldots)$
がわかる。

$\boxed{\ \ ケ\ \ }, \boxed{\ \ コ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$3^{n-1}+1$ ①$\frac{1}{2}・3^n+\frac{1}{2}$
②$3^{n-1}+n$ ③$\frac{1}{2}・3^n+n-\frac{1}{2}$
④$3^{n-1}+n^2$ ⑤$\frac{1}{2}・3^n+n^2-\frac{1}{2}$
⑥$2・3^{n-1}$ ⑦$\frac{5}{2}・3^{n-1}-\frac{1}{2}$
⑧$2・3^{n-1}+n-1$ ⑨$\frac{5}{2}・3^{n-1}+n-\frac{3}{2}$
ⓐ$2・3^{n-1}+n^2-1$ ⓑ$\frac{5}{2}・3^{n-1}+n^2-\frac{3}{2}$

(2)歩行者が$y=300$の位置に到着するときまでに、自転車が装甲車に追いつく
回数は$\boxed{\ \ サ\ \ }$回である。また、$\boxed{\ \ サ\ \ }$回目に自転車が歩行者に追いつく
時刻は、$x=\boxed{\ \ シスセ\ \ }$である。

2022共通テスト数学過去問
この動画を見る 

数列 By Picmin3daisukiさん

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$a_1=\sin^22$
$a_{n+1}=4a_n(1-a_n)$を満たす一般項$a_n$を求めよ。
この動画を見る 

東京海洋大 漸化式と3次関数

アイキャッチ画像
単元: #数列#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数B#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$a_1=1$であり,$a_{n+1}=27^{n^2-3n-9}a_n$とする.

(1)一般項$a_n$を求めよ.
(2)$a_n$が最小となる値を求めよ.

2013東京海洋大過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第5問〜人形を並べる方法と漸化式

単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$(1)同じ人形$n$体(nは正の整数)を、1体または2体ずつ前方を向かせて列に並べる。
例えば$n=10$のとき、下図(※動画参照)のような並べ方がある。

ここで、$n$体の人形の並べ方の総数を$a_n$とすると
$a_1=1,\ a_2=2,\ a_3=3,\ldots,\ a_{12}=\boxed{\ \ アイウ\ \ },\ a_{13}=\boxed{\ \ エオカ\ \ },\ a_{14}=\boxed{\ \ キクケ\ \ }$
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。

(2)同じ人形n体(nは2以上の整数)を、2体または3体ずつ前方を向かせて列に並べる。
その並べ方の総数を$b_n$とすると
$b_2=1,\ b_3=1,\ b_4=1,\ldots,\ b_{12}=\boxed{\ \ コサシ\ \ },\ b_{13}=\boxed{\ \ スセソ\ \ },\ b_{14}=\boxed{\ \ タチツ\ \ }$
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。

2021慶應義塾大学整合政策学部過去問
この動画を見る 

【数B】数列:2つ前までさかのぼる数学的帰納法:すべての自然数nについて、t=x+1/xとおくと、x^n+1/x^nはtのn次式であることを証明せよ。

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
すべての自然数$n$について、$t=x+\dfrac{1}{x}$とおくと、$\dfrac{x^n+1}{x^n}$
は$t$の$n$次式であることを証明せよ。

この動画を見る 
PAGE TOP