【短時間でポイントチェック!!】定積分の基礎〔現役講師解説、数学〕 - 質問解決D.B.(データベース)

【短時間でポイントチェック!!】定積分の基礎〔現役講師解説、数学〕

問題文全文(内容文):
$\int_{-1}^2(x^2-6x+1)dx$
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\int_{-1}^2(x^2-6x+1)dx$
投稿日:2024.02.10

<関連動画>

福田の数学〜上智大学2024TEAP利用型文系第3問(4)〜線分の通過範囲の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#軌跡と領域#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}(4)$座標平面上で放物線$y=x^2$上の点P$(t,t^2)(0 \leqq t \leqq 1)$における接線$y=-(x+1)^2$の二つの共有点の中点をQとする。ただし、共有点が1つの場合は、その共有点をQとする。Qの座標は$(\boxed{ユ}t+\boxed{ヨ}
,\boxed{ラ}t^2+\boxed{リ}t+\boxed{ル})$である。
tが$0 \leqq t \leqq1$の範囲を動くとき線分PQが動いてできる図形の面積は$\frac{\boxed{レ}}{\boxed{ロ}}$である
この動画を見る 

#島根大学2019#不定積分_44

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#島根大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} (\sin x)^{2018} \cos x \ dx$
を解け.

2019島根大学過去問題
この動画を見る 

#弘前大学2023#定積分_57

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#弘前大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} \dfrac{dx}{3+2x-x^2}$を解け.

2023弘前大学過去問題
この動画を見る 

#電気通信大学2015#区分求積法#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n^2}\displaystyle \sum_{k=1}^n k \sin\displaystyle \frac{k\pi}{2n}$

出典:2015年電気通信大学
この動画を見る 

福田の数学〜東京慈恵会医科大学2025医学部第2問〜定積分と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

次の問いに答えよ。ただし、対数は自然対数とする。

(1)$3$以上の自然数$n$について、

次の不等式が成り立つことを示せ。

$\dfrac{1}{2\log(n+1)}\leqq \displaystyle \int_{0}^{1} \dfrac{x}{\log(x+n)} dx \leqq \dfrac{1}{2\log n}$

(2)不定積分$\displaystyle \int \dfrac{1}{x(log x)^2} dx$ を求めよ。

(3)$m \geqq n$をみたす$3$以上の自然数$m,n$について、

次の不等式が成り立つことを示せ。

$\dfrac{1}{\log n}-\dfrac{1}{\log(m+1)}\leqq \displaystyle \sum_{k=n}^{m} \dfrac{2}{k \log k} \displaystyle \int_{0}^{1} \dfrac{1}{\log(x+k)} dx \leqq \dfrac{1}{\log(n-1)} -\dfrac{1}{\log m}$

$2025$年東京慈恵会医科大学医学部過去問題
この動画を見る 
PAGE TOP