福田の数学〜明治大学2021年全学部統一入試Ⅲ第3問(1)〜定積分と極限 - 質問解決D.B.(データベース)

福田の数学〜明治大学2021年全学部統一入試Ⅲ第3問(1)〜定積分と極限

問題文全文(内容文):
${\Large\boxed{3}} (1)\ k \gt 0$として、次の定積分を考える。
$F(k)=\int_0^1\frac{e^{kx}-1}{e^{kx}+1}\ dx$
このとき、$F(2)=\log(\boxed{\ \ ア\ \ })$となる。また、$\lim_{k \to \infty}F(k)=\boxed{\ \ イ\ \ }$である。

$\boxed{\ \ ア\ \ }$の解答群
$⓪\ \frac{e+1}{e}  ①\ \frac{e^2+1}{e}  ②\ \frac{e^4+1}{e}  ③\ \frac{e^6+1}{e}  ④\ \frac{e^8+1}{e}$
$⑤\ \frac{e+1}{2e}  ⑥\ \frac{e^2+1}{2e}  ⑦\ \frac{e^4+1}{2e}  ⑧\ \frac{e^6+1}{2e}  ⑨\ \frac{e^8+1}{2e}$

2021明治大学全統過去問
単元: #関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}} (1)\ k \gt 0$として、次の定積分を考える。
$F(k)=\int_0^1\frac{e^{kx}-1}{e^{kx}+1}\ dx$
このとき、$F(2)=\log(\boxed{\ \ ア\ \ })$となる。また、$\lim_{k \to \infty}F(k)=\boxed{\ \ イ\ \ }$である。

$\boxed{\ \ ア\ \ }$の解答群
$⓪\ \frac{e+1}{e}  ①\ \frac{e^2+1}{e}  ②\ \frac{e^4+1}{e}  ③\ \frac{e^6+1}{e}  ④\ \frac{e^8+1}{e}$
$⑤\ \frac{e+1}{2e}  ⑥\ \frac{e^2+1}{2e}  ⑦\ \frac{e^4+1}{2e}  ⑧\ \frac{e^6+1}{2e}  ⑨\ \frac{e^8+1}{2e}$

2021明治大学全統過去問
投稿日:2021.09.23

<関連動画>

【数Ⅲ】【関数と極限】無限級数1-(x+y)+(x+y)²-(x+y)³+…+{-(x+y)}^n-1 +…が収束し、その和が1/1-xであるとき、yをxの式で表し、そのグラフをかけ。

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
$|r| \lt 1$ のとき $\displaystyle\lim_{n \to \infty} n r^n = 0$ である。
このことを利用して$,$ 次の無限級数の和を求めよ。ただし$,$ $|x| < 1$ とする。
$(1)$ $\displaystyle \frac{1}{3}$ $+ \displaystyle \frac{2}{9}$ $+\displaystyle \frac{3}{27}$ $+ \cdots \cdots$ $
+\displaystyle \frac{n}{3^n}$ $ + \cdots \cdots$
$(2)$ $1 + 2x + 3x^2 $$ + \cdots \cdots $$ + n x^{n-1} + \cdots \cdots$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題073〜東京理科大学2019年度理工学部第3問〜定積分と不等式そして極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 関数f(x)を$f(x)=\displaystyle\int_0^x\frac{dt}{1+t^2}$と定める。
(1)t=$\tan\theta$とおく置換積分により$f(1)=\displaystyle\int_0^1\frac{dt}{1+t^2}$の値を求めよ。
(2)0 $\lt$ $\alpha$ $\lt$ 1とし、mを自然数とするとき、以下の不等式が成り立つことを示せ。
$f(a)\displaystyle\int_a^1x^mdx$ $\lt$ $\displaystyle\int_a^1f(x)x^mdx$ $\lt$ $\displaystyle\int_0^1f(x)x^mdx$ $\lt$ $f(1)\displaystyle\int_0^1x^mdx$
(3)$\displaystyle\lim_{m \to \infty}\left(1-\frac{1}{\sqrt m}\right)^m$を求めよ。必要ならばs >1のとき$\displaystyle\left(1-\frac{1}{s}\right)^s \lt \frac{1}{2}$となることを用いてよい。
(4)$\displaystyle\lim_{m \to \infty}m\int_{1-\frac{1}{\sqrt m}}^1f(x)x^mdx$を求めよ。

2019東京理科大学理工学部過去問
この動画を見る 

【高校数学】数Ⅲ-87 関数の連続性②

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の関数$f(x)$が、$x=0$で連続であるか不連続であるかを調べよ。
ただし、$[x]$は実数$x$を超えない最大の整数とする。

①$f(x)=3x^2$

②$f(x)=[\cos x]$

③$f(x)=x^2+\dfrac{x^2}{1+x^2}+\dfrac{x^2}{(1+x^2)^2}+・・・$
この動画を見る 

福田の数学〜旧・東京工業大学、東京科学大学2025理系第1問〜逆関数の定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$$\quad$関数$f(x)$を$x\geqq 0$に対して

$f(x)=x\log(1+x)$と定める。

(1)不定積分$\displaystyle \int x\log(1+x)dx$を求めよ。

(2)$y=f(x) \quad (x\geqq 0)$の逆関数を

$y=g(x) \quad (x\geqq 0)$とする。

また、$a,b$を$g(a)=1,g(b)=2$となる

実数となる。

このとき定積分$I=\displaystyle \int_{a}{b} g(x)dx$の値を求めよ。

(3)関数$P(x)$を$x\geqq 0$に対して

$P(x)=\displaystyle \int_{0}^{x}\sqrt{1+f(t)dt}$と定める。

このとき、$y=P(x)$について、

定義域を$x\geqq 0$とする逆関数

$y=Q(x)$が微分可能であることは

説明なしに認めてよい。

関数$R(x)$を$x\geqq 0$に対して

$R(x)=\displaystyle int_{0}^{P(x)}\dfrac{1}{Q'(\upsilon)}$と定めるとき、

$R(x)$を求めよ。

図は動画内参照

$2025$年東京科学大学(旧・東京工業大学)理系過去問題
この動画を見る 

【三角関数の微分】三角関数の微分の導出について解説しました!【数学III】

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
三角関数の微分の導出について解説します。
この動画を見る 
PAGE TOP