福田の数学〜明治大学2021年全学部統一入試Ⅲ第3問(1)〜定積分と極限 - 質問解決D.B.(データベース)

福田の数学〜明治大学2021年全学部統一入試Ⅲ第3問(1)〜定積分と極限

問題文全文(内容文):
${\Large\boxed{3}} (1)\ k \gt 0$として、次の定積分を考える。
$F(k)=\int_0^1\frac{e^{kx}-1}{e^{kx}+1}\ dx$
このとき、$F(2)=\log(\boxed{\ \ ア\ \ })$となる。また、$\lim_{k \to \infty}F(k)=\boxed{\ \ イ\ \ }$である。

$\boxed{\ \ ア\ \ }$の解答群
$⓪\ \frac{e+1}{e}  ①\ \frac{e^2+1}{e}  ②\ \frac{e^4+1}{e}  ③\ \frac{e^6+1}{e}  ④\ \frac{e^8+1}{e}$
$⑤\ \frac{e+1}{2e}  ⑥\ \frac{e^2+1}{2e}  ⑦\ \frac{e^4+1}{2e}  ⑧\ \frac{e^6+1}{2e}  ⑨\ \frac{e^8+1}{2e}$

2021明治大学全統過去問
単元: #関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}} (1)\ k \gt 0$として、次の定積分を考える。
$F(k)=\int_0^1\frac{e^{kx}-1}{e^{kx}+1}\ dx$
このとき、$F(2)=\log(\boxed{\ \ ア\ \ })$となる。また、$\lim_{k \to \infty}F(k)=\boxed{\ \ イ\ \ }$である。

$\boxed{\ \ ア\ \ }$の解答群
$⓪\ \frac{e+1}{e}  ①\ \frac{e^2+1}{e}  ②\ \frac{e^4+1}{e}  ③\ \frac{e^6+1}{e}  ④\ \frac{e^8+1}{e}$
$⑤\ \frac{e+1}{2e}  ⑥\ \frac{e^2+1}{2e}  ⑦\ \frac{e^4+1}{2e}  ⑧\ \frac{e^6+1}{2e}  ⑨\ \frac{e^8+1}{2e}$

2021明治大学全統過去問
投稿日:2021.09.23

<関連動画>

原始ピタゴラス数を探せ

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
原始ピタゴラス数に関して解説していきます.
この動画を見る 

福田のおもしろ数学401〜極限関数の個数

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$f(x)=\displaystyle \lim_{n\to\infty} \dfrac{\tan^{2n+1}x-\tan^n x+1}{\tan^{2n+2}x+\tan^{2n}x+1}$

$\left(0\leqq x \lt \dfrac{\pi}{2}\right)$のグラフを描いて下さい。
この動画を見る 

11奈良県教員採用試験(数学:高校3番 逆関数と積分)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
3⃣高 $f(x)=\frac{e^x+e^{-x}}{2}$ $(x \geqq 0)$の逆関数をg(x)
(1)g(x)を求めよ。
(2)y=g(x),x=2,x軸で囲まれた面積
この動画を見る 

大学入試問題#466「絶対に知っておくべき解き方」 電気通信大学(2014) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 1 } \displaystyle \frac{x^2log(x+1)-log\ 2}{x-1}$

出典:2014年電気通信大学 入試問題
この動画を見る 

福田のおもしろ数学276〜一般項が求まらない数列の極限

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$a_1=a(\gt 0),a_{n+1}=\frac{1}{6}cosa_n+\frac{1}{2}a_n+\frac{π}{4}$のとき、$\displaystyle \lim_{ n \to \infty } a_n$を求めて下さい。
この動画を見る 
PAGE TOP