福田のわかった数学〜高校3年生理系045〜極限(45)関数の連続性(2) - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系045〜極限(45)関数の連続性(2)

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 関数の連続性(2)\\
f(x)=[x^2](x+1)\\
はx=0で連続かまた、x=1で連続か、調べよ。
\end{eqnarray}
単元: #関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 関数の連続性(2)\\
f(x)=[x^2](x+1)\\
はx=0で連続かまた、x=1で連続か、調べよ。
\end{eqnarray}
投稿日:2021.07.08

<関連動画>

福田の数学〜慶應義塾大学2024年理工学部第1問(2)〜漸化式とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)は実数全体で定義されており、$x\leqq 2$において
$\dfrac{2}{3}-\dfrac{1}{3}x\leqq f(x)\leqq 2-x$
を満たしているものとする。数列{$a_{ n }$}は漸化式
$a_{ n+1 }=a_{ n }+f(a_{ n })$
を満たしているものとする。
(i)$a_{ 1 } \leqq 2$ならば、すべての自然数nに対して、$a_{ 1 } \leqq a_{ n }\leqq2$となる事を証明しなさい。
(ii)$a_{ 1 } \leqq 2$ならば、$a_{ 1 }$の値によらず$\displaystyle \lim_{ n \to \infty } a_n = 2$となる事を証明しなさい。
この動画を見る 

大学入試問題#358「チャートの例題に載ってもいいのかな?」 青山学院大学(2010) #定積分 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ a \to \infty } \displaystyle \int_{1}^{0}(\displaystyle \frac{x+1}{\sqrt{ x^2+2x }}-1)dx$

出典:2010年青山学院大学 入試問題
この動画を見る 

福田のおもしろ数学247〜複雑な無理方程式の解を1つ見つける

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$
5(\sqrt{1-x}+\sqrt{1+x})=6x+8\sqrt{1-x^2}
$の解を1つ求めて下さい。
この動画を見る 

数検準1級2次(3番 極限値)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#関数の極限#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
曲線$y=2\sqrt x$上の点$P(t,2\sqrt t)$に対して,
$y$軸上に$OP=OQ$をみたす点$Q$をとる.
直線$PQ$と$x$軸との支点を$R$とする.
$\displaystyle \lim_{t\to 0} \ OR$を求めよ.

図は動画内参照
この動画を見る 

福田のわかった数学〜高校3年生理系003〜極限(3)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(3)
$\lim_{n \to \infty}(2^n+3^n)^{\frac{1}{n}}$ を求めよ。
この動画を見る 
PAGE TOP