福田の数学〜慶應義塾大学2021年環境情報学部第5問〜空間の領域に位置する直方体の体積 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年環境情報学部第5問〜空間の領域に位置する直方体の体積

問題文全文(内容文):
${\Large\boxed{5}}$ $xyz空間$において、$直方体ABCD-EFGH$が$z \geqq x^2+y^2$
$(0 \leqq z \leqq 1)$を満たす立体の周辺および内部に存在する。この
直方体の$面ABCD,EFGH$は$xy平面$に平行であり、$頂点A,B,C,D$
は$平面z=1$上に、$頂点E,F,G,H$は$曲面z=x^2+y^2$上に存在する。

$(1)$$直方体ABCD-EFGH$の$面ABCD$および$EFGH$が$1辺$の$長さa$
の正方形のとき、正の実数である$a$の取り得る値の範囲は
$0 \lt a \lt \sqrt{\boxed{\ \ アイ\ \ }}$であり、この直方体の体積は$\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}a^4+\boxed{\ \ キク\ \ }a^2$
である。
$(2)$$直方体ABCD-EFGH$の$面ABFE$および$DCGH$が$1辺$の$長さb$
の正方形のとき、正の実数である$b$の取り得る値の範囲は
$0 \lt b \lt \boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}$であり、この直方体の体積は
$b^2\sqrt{\boxed{\ \ ソタ\ \ }b^2+\boxed{\ \ チツ\ \ }b+\boxed{\ \ テト\ \ }}$である。

$(3)$$直方体ABCD-EFGH$の全ての面が$1辺$の$長さc$の正方形のとき、すなわち
$直方体ABCD-EFGH$が立方体のとき、正の実数である$c$の値は
$\boxed{\ \ ナニ\ \ }+\sqrt{\boxed{\ \ ヌネ\ \ }}$であり、$立方体ABCD-EFGH$の体積は
$\boxed{\ \ ノハヒ\ \ }+\boxed{\ \ フヘ\ \ }\sqrt{\boxed{\ \ ホマ\ \ }}$である。
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$ $xyz空間$において、$直方体ABCD-EFGH$が$z \geqq x^2+y^2$
$(0 \leqq z \leqq 1)$を満たす立体の周辺および内部に存在する。この
直方体の$面ABCD,EFGH$は$xy平面$に平行であり、$頂点A,B,C,D$
は$平面z=1$上に、$頂点E,F,G,H$は$曲面z=x^2+y^2$上に存在する。

$(1)$$直方体ABCD-EFGH$の$面ABCD$および$EFGH$が$1辺$の$長さa$
の正方形のとき、正の実数である$a$の取り得る値の範囲は
$0 \lt a \lt \sqrt{\boxed{\ \ アイ\ \ }}$であり、この直方体の体積は$\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}a^4+\boxed{\ \ キク\ \ }a^2$
である。
$(2)$$直方体ABCD-EFGH$の$面ABFE$および$DCGH$が$1辺$の$長さb$
の正方形のとき、正の実数である$b$の取り得る値の範囲は
$0 \lt b \lt \boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}$であり、この直方体の体積は
$b^2\sqrt{\boxed{\ \ ソタ\ \ }b^2+\boxed{\ \ チツ\ \ }b+\boxed{\ \ テト\ \ }}$である。

$(3)$$直方体ABCD-EFGH$の全ての面が$1辺$の$長さc$の正方形のとき、すなわち
$直方体ABCD-EFGH$が立方体のとき、正の実数である$c$の値は
$\boxed{\ \ ナニ\ \ }+\sqrt{\boxed{\ \ ヌネ\ \ }}$であり、$立方体ABCD-EFGH$の体積は
$\boxed{\ \ ノハヒ\ \ }+\boxed{\ \ フヘ\ \ }\sqrt{\boxed{\ \ ホマ\ \ }}$である。
投稿日:2021.07.03

<関連動画>

福田のわかった数学〜高校2年生第6回〜相加相乗平均の関係

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 相加相乗平均の関係
$a,b,c$を正の数とする。
(1)$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$を示せ。
(2)$ab+bc+ca=k$(定数)のとき、$abc$の最大値とその時の$a,b,c$を求めよ。
この動画を見る 

傍接円の半径を求める 解き方2通り

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
傍接円の半径を求めよ
この動画を見る 

高専数学 微積II #53(3)(4) 合成関数の微分法

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$z=f(x,y)$:全微分可能
$z_u,z_{\nu}$を,$u,\nu,z_x,z_y$で表せ.

(3)$x=\tan\dfrac{\nu}{u},y-\cos(u+\nu)$
(4)$x=u\log\nu,y=e^u \nu$
この動画を見る 

福田のわかった数学〜高校2年生069〜三角関数(8)三角不等式

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(8) 三角不等式
aは2以上の整数、$0 \lt x \leqq \pi$のとき次の連立不等式を解け。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\cos x \leqq \cos2ax  \ldots① \\
\sin2ax \leqq 0    \ldots②
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【数Ⅱ】【複素数と方程式】剰余の定理と因数定理2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
多項式P(x)を(x-1)(x+2)で割ると余りが3x-1である。P(x)をx-1およびx-2で割ったときの余りを、それぞれ求めよ。

多項式P(x)をx-2で割ると余りが5, x-3で割ると余りが9である。P(x)を(x-2)(x-3)で割ったときの余りを求めよ。

多項式P(x)をx²-3x+2で割ると余りが-x+4, x²-4x+3で割ると余りが3xである。P(x)をx²-5x+6で割ったときの余りを求めよ。
この動画を見る 
PAGE TOP