【高校数学】三角関数⑥~三角方程式の応用~ 4-8【数学Ⅱ】 - 質問解決D.B.(データベース)

【高校数学】三角関数⑥~三角方程式の応用~ 4-8【数学Ⅱ】

問題文全文(内容文):
三角関数⑥

0≦θ<2πのとき、次の方程式を満たすθを求めよ。
(1) sin(θ-$\displaystyle \frac{π}{6}$)=-$\displaystyle \frac{1}{2}$

(2) cos(θ+$\displaystyle \frac{π}{4}$)=$\displaystyle \frac{√3}{2}$
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三角関数⑥

0≦θ<2πのとき、次の方程式を満たすθを求めよ。
(1) sin(θ-$\displaystyle \frac{π}{6}$)=-$\displaystyle \frac{1}{2}$

(2) cos(θ+$\displaystyle \frac{π}{4}$)=$\displaystyle \frac{√3}{2}$
投稿日:2018.10.03

<関連動画>

三角関数基本

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
値を求めよ.
$\cos \dfrac{\pi}{7}・\cos \dfrac{2\pi}{7}・\cos\dfrac{3\pi}{7}$
この動画を見る 

信州大(医)三角関数 最大値・最小値 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sin^4x+2\sin x \cos x+\cos ^4x$の最小値と最大値を求めよ

出典:1986年信州大学医学部 過去問
この動画を見る 

【数Ⅱ】三角関数:関数y=-sin²θ+cosθ(0≦θ<2π)の最大値と最小値を求めよう。その時のθも求めよう。

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数$y=-\sin^2\theta+\cos\theta(0≦\theta<2\pi)$の最大値と最小値を求めよう。その時の$\theta$も求めよう。
この動画を見る 

札幌医大 三角方程式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #三角関数とグラフ#加法定理とその応用
指導講師: 鈴木貫太郎
問題文全文(内容文):
札幌医科大学過去問題
xに関する方程式
$cos2x+acosx+b=0$
この方程式$0 \leqq x < 2\pi$の範囲で2個の異なる実数解を持つためのa,bに関する条件
この動画を見る 

【短時間でポイントチェック!!】三角関数の合成〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$r \sin(\theta+\alpha)$の形に表せ。
ただし、$r>0,-\pi<\alpha≦\pi$とする。
①$\sin\theta-\cos\theta$
②$\frac{\sqrt{3}}{2}\sin\theta+\frac{1}{2}\cos\theta$
この動画を見る 
PAGE TOP