問題文全文(内容文):
${\Large\boxed{1}}$
(2)$n$を正の整数とする。$f(x)$は$x$の$n+1$次式で表される関数で、$x$が$0$以上$n$以下の整数のとき$f(x)=0$であり、$f(n+1)=n+1$である。このとき、
$\displaystyle \sum_{k=0}^n\frac{(1-\sqrt2)^k}{f'(k)} \gt 2^{2021}$
を満たす最小の$n$は$\boxed{\ \ イ\ \ }$である。
2021早稲田大学商学部過去問
${\Large\boxed{1}}$
(2)$n$を正の整数とする。$f(x)$は$x$の$n+1$次式で表される関数で、$x$が$0$以上$n$以下の整数のとき$f(x)=0$であり、$f(n+1)=n+1$である。このとき、
$\displaystyle \sum_{k=0}^n\frac{(1-\sqrt2)^k}{f'(k)} \gt 2^{2021}$
を満たす最小の$n$は$\boxed{\ \ イ\ \ }$である。
2021早稲田大学商学部過去問
単元:
#大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$
(2)$n$を正の整数とする。$f(x)$は$x$の$n+1$次式で表される関数で、$x$が$0$以上$n$以下の整数のとき$f(x)=0$であり、$f(n+1)=n+1$である。このとき、
$\displaystyle \sum_{k=0}^n\frac{(1-\sqrt2)^k}{f'(k)} \gt 2^{2021}$
を満たす最小の$n$は$\boxed{\ \ イ\ \ }$である。
2021早稲田大学商学部過去問
${\Large\boxed{1}}$
(2)$n$を正の整数とする。$f(x)$は$x$の$n+1$次式で表される関数で、$x$が$0$以上$n$以下の整数のとき$f(x)=0$であり、$f(n+1)=n+1$である。このとき、
$\displaystyle \sum_{k=0}^n\frac{(1-\sqrt2)^k}{f'(k)} \gt 2^{2021}$
を満たす最小の$n$は$\boxed{\ \ イ\ \ }$である。
2021早稲田大学商学部過去問
投稿日:2021.06.09





