問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)nを正の整数とする。f(x)はxのn+1次式で表される関数で、xが0以上\\
n以下の整数のときf(x)=0であり、f(n+1)=n+1である。このとき、\\
\\
\sum_{k=0}^n\frac{(1-\sqrt2)^k}{f'(k)} \gt 2^{2021}\\
\\
を満たす最小のnは\boxed{\ \ イ\ \ }である。
\end{eqnarray}
2021早稲田大学商学部過去問
\begin{eqnarray}
{\Large\boxed{1}} (2)nを正の整数とする。f(x)はxのn+1次式で表される関数で、xが0以上\\
n以下の整数のときf(x)=0であり、f(n+1)=n+1である。このとき、\\
\\
\sum_{k=0}^n\frac{(1-\sqrt2)^k}{f'(k)} \gt 2^{2021}\\
\\
を満たす最小のnは\boxed{\ \ イ\ \ }である。
\end{eqnarray}
2021早稲田大学商学部過去問
単元:
#大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)nを正の整数とする。f(x)はxのn+1次式で表される関数で、xが0以上\\
n以下の整数のときf(x)=0であり、f(n+1)=n+1である。このとき、\\
\\
\sum_{k=0}^n\frac{(1-\sqrt2)^k}{f'(k)} \gt 2^{2021}\\
\\
を満たす最小のnは\boxed{\ \ イ\ \ }である。
\end{eqnarray}
2021早稲田大学商学部過去問
\begin{eqnarray}
{\Large\boxed{1}} (2)nを正の整数とする。f(x)はxのn+1次式で表される関数で、xが0以上\\
n以下の整数のときf(x)=0であり、f(n+1)=n+1である。このとき、\\
\\
\sum_{k=0}^n\frac{(1-\sqrt2)^k}{f'(k)} \gt 2^{2021}\\
\\
を満たす最小のnは\boxed{\ \ イ\ \ }である。
\end{eqnarray}
2021早稲田大学商学部過去問
投稿日:2021.06.09